PAPER-3 COLOR CODE: PINK

24th NATIONAL CERTIFICATION EXAMINATION FOR

ENERGY MANAGERS & ENERGY AUDITORS - SEPTEMBER, 2024 PAPER - 3: ENERGY EFFICIENCY IN ELECTRICAL UTILITIES

SECTION -I: OBJECTIVE QUESTIONS

Marks 50x1=50

- 1. What is the primary function of substations in the electrical power supply system?
 - a) To generate electricity
 - b) To communicate over long distances
 - c) To facilitate voltage transformation
 - d) None of the above
- 2. How does the transmission voltage level affect the efficiency of long-distance power transmission?
 - a) Higher voltage levels reduce transmission losses
 - b) Higher voltage levels increase transmission losses
 - c) Voltage levels do not affect transmission losses
 - d) None of the above
- 3. What is the primary purpose of using high voltage direct current (HVDC) transmission over long distances?
 - a) To increase the frequency of electricity
 - b) To step down the voltage for distribution
 - c) To minimize transmission losses over long distances
 - d) All of the above
- 4. What is the impact of voltage imbalance among the three phases in an electrical system?
 - a) Improved motor efficiency
 - b) Increased motor losses and reduced equipment life
 - c) Reduced power consumption
 - d) Enhanced power factor
- 5. How does adding capacitors to an electrical distribution system improve power factor?
 - a) By providing the reactive power
 - b) By increasing the active power consumption
 - c) By lowering the system voltage
 - d) By increasing the frequency of the system
- 6. A transformer has a primary voltage of 220V and a secondary voltage of 110V. If the primary current is 5A, what is the secondary current assuming no losses?
 - a) 2.5A b) 5A c) 10A d) 20A

- 7. A factory consumes 500,000 kWh of electricity per month with a power factor of 0.8. How much is the reactive power (kVAR)?
 - a) 400,000 kVAR
 - b) 375,000 kVAR
 - c) 800,000 kVAR
 - d) 500,000 Kvar
- 8. Which of the following best describes an induction motor's operation?
 - a) It uses direct current to create mechanical energy.
 - b) It generates a rotating magnetic flux that induces current in the rotor.
 - c) It operates synchronously with the AC supply frequency.
 - d) It requires external excitation to operate.
- 9. How does operating a motor in star mode affect its performance?
 - a) It reduces the voltage and derates the motor capacity.
 - b) It increases motor speed.
 - c) It improves the power factor at high loads.
 - d) It eliminates the need for external capacitors.
- 10. In a VFD-controlled motor, what happens when the supply frequency is reduced while maintaining the same voltage?
 - a) The motor speed increases.
 - b) The motor efficiency improves.
 - c) The motor draws higher current and may overheat.
 - d) The motor torque decreases.
- 11. Which of the following describes the function of a soft starter in a motor system?
 - a) It increases the motor's full-load speed.
 - b) It converts AC power to DC power.
 - c) It reduces the inrush current during motor start-up.
 - d) It improves the motor's efficiency at low speeds.
- 12. A motor operates at 75% load with an efficiency of 88%. If the motor's rated power is 20 kW, what is the actual output power?
 - a) 15 kW b) 13.2 kW c) 17.6 kW d) 14.4 kW
- 13. What is the main purpose of an after-cooler in a compressed air system?
 - a) To remove moisture from the air by cooling it
 - b) To increase the pressure of the compressed air
 - c) To filter out dust and particles
 - d) To lubricate the compressed air

- 14. How does a desiccant air dryer remove moisture from compressed air?
 - a) By cooling the air
 - b) By using adsorbents like silica gel or activated carbon
 - c) By increasing the pressure
 - d) By reducing the air flow rate
- 15. Which of the following is an efficient method to control the capacity of a centrifugal compressor?
 - a) Automatic on/off control
 - b) Variable inlet guide vanes
 - c) Load and unload control
 - d) Multi-step control
- 16. What is the effect of increasing the intake air temperature on the efficiency of an air compressor?
 - a) Increases efficiency by reducing power consumption
 - b) Decreases efficiency by increasing power consumption
 - c) No significant effect on efficiency
 - d) Increases the volumetric capacity of the compressor
- 17. What is the main benefit of using a variable speed drive (VSD) with a screw compressor?
 - a) Increases the maximum pressure capacity b) Reduces the size of the compressor
 - c) Eliminates unloaded running condition d) Simplifies maintenance
- 18. Which of the following describes the primary function of an air receiver in a compressed air system?
 - a) To increase the air pressure b) To act as a reservoir and dampen pulsations
 - c) To filter out impurities d) To cool the compressed air
- 19. What is the primary function of the evaporator in a refrigeration cycle?
 - a) To compress the refrigerant b) To absorb heat from the environment
 - c) To condense the refrigerant d) To regulate the flow of refrigerant
- 20. In which component of an ideal refrigeration system, the refrigeration temperature will increase?
 - a) Compressor b) Condenser c) Evaporator d) Expansion valve
- 21. Which refrigerant is commonly used in vapor absorption refrigeration systems?
 - a) R-22 b) R-134a c) H₂O d) LiBr

- 22. What is the effect of increasing the chilled water leaving temperature on the efficiency of a centrifugal chiller?
 - a) It increases the efficiency of the chiller b) It decreases the efficiency of the chiller
 - c) It has no effect on efficiency d) It increases the refrigerant flow rate
- 23. An HVAC system operates with a COP (Coefficient of Performance) of 4. If the system provides 100 kW of cooling, what is the power input to chiller?
 - a) 0.04 kW **b) 25 kW** c) 400 kW d) None of the above
- 24. What is the effect of decreasing the RPM of a fan by 10% on its power requirement?
 - a) Decreases the power requirement by 27% b) Decreases the power requirement by 19%
 - c) Increases the power requirement by 10% d) No significant effect
- 25. How does an increase in system resistance affect the operation of a centrifugal fan?
 - a) Increases the airflow b) Reduces the airflow
 - c) Reduces the static pressure d) No effect on fan performance
- 26. What is the primary purpose of trimming the impeller in a centrifugal pump?
 - a) To increase the pump speed b) To adjust the pump capacity to match system requirements
 - c) To reduce the pump speed d) To increase the NPSH required
- 27. How does increasing the diameter of the suction pipe affect the NPSHA in a pumping system? a) Reduces NPSHA b) Increases NPSHA c) Decreases NPSHR d) Increases NPSHR
- 28. A pump has a flow rate of 200 cubic meters per hour and operates against a head of 30 meters. If the pump efficiency is 70%, what is the input power required?
 - a) 60.5 kW b) 23.36 kW c) 95.2 kW d) 100 kW
- 29. What is the effect of cavitation in pump?
 - a) Increases efficiency
 - b) Reduces noise and vibration
 - c) Causes erosion of impeller surfaces
 - d) Increases NPSH required
- 30. What is the relationship between pump speed and flow rate in a centrifugal pump according to the Affinity Laws?
 - a) Flow rate is proportional to the pump speed
 - b) Flow rate is proportional to the square of the pump speed
 - c) Flow rate is proportional to the cube of the pump speed
 - d) Flow rate is independent of pump speed
- 31. What is the impact of using larger diameter pipes on the system resistance in a pumping system?
 - a) Reduces system resistance by lowering friction head losses
 - b) Increases system resistance

- c) Increases power
- d) Increases static head
- 32. A cooling tower reduces the temperature of water from 40°C to 30°C. If the mass flow rate of water is 5 kg/s, what is the heat removed by the cooling tower? a) 500 kW b) 209 kW c) 2 kW d) 5 kW
- 33. The approach temperature of a cooling tower is 5°C, and the range is 10°C. If the inlet water temperature is 40°C, what is the outlet water temperature?
 - a) 25°C
 - b) 30°C
 - c) 35°C
 - d) 45°C
- 34. How can the performance of a cooling tower be improved?
 - a) Proper water treatment
 - b) Regular maintenance
 - c) Optimizing air and water flow
 - d) All of the above
- 35. What is the primary function of a luminaire in a lighting system?
 - a) To generate light
 - b) To store electrical energy
 - c) To distribute light emitted from lamps
 - d) To control the voltage supply
- 36. Which type of lamp has the highest luminous efficacy among the following?
 - a) Low pressure sodium vapour lamp
 - b) Halogen lamp
 - c) LED lamp
 - d) Compact fluorescent lamp (CFL)
- 37. How does the use of high-efficiency luminaries contribute to energy conservation?
 - a) By decreasing the power consumption
 - b) By increasing the luminous efficacy
 - c) By improving light distribution characteristics
 - d) All of the above
- 38. How does altitude affect the performance of a DG set?
 - a) Increases power output
 - b) Reduces fuel consumption
 - c) Reduces power output
 - d) No change in fuel consumption
- 39. What is the Solar Heat Gain Coefficient (SHGC) used for in building energy analysis?
 - a) To measure light transmittance

	d) To measure the thermal emittance of roofing materials
40.	What is the primary function of an economizer in an HVAC system? a) To increase indoor air pollution b) To reduce the cost of heating equipment c) To use outdoor air for cooling when conditions are favorable, saving energy d) To increase the use of mechanical cooling systems
41.	Energy Performance Index is the ratio of total building annual energy consumption to a) Carpet area b) Built up area c) roof area d)Windows and Walls area
42.	In a D G set, the generator is generating 1000kVA at 0.7PF. If the specific fuel consumption of this D G set is 0.25 lits per kWh, then how much fuel in litres will be consumed while delivering generated power for one hour? a)230 b) 250 c)175 d) 225
43.	The power measured in an Induced Draft (I D) fan operating at 49 Hz is 52 kW. A Variable Frequency Drive (VFD) is installed and the fan was operated at 34 Hz, The estimated Power saving will be a)35.7 kW b)17.3 kW c)34.6 kW d)36 kW
44.	A fan is drawing 16 kW at 800 RPM. If its speed is reduced to 600 RPM, the power drawn by the fan will be a) 6.75 kW b) 9 kW c) 12 kW d) None of the above
45.	Harmonics generation is more in a) Inverter Drive b) LED lamp c) Transformer d) Resistance heater
46.	A 500 cfm reciprocating compressor has a loading and unloading period of 5 seconds and 20 seconds respectively during a compressor leakage test. The air leakage in the compressor air system will be

b) To measure the heat gain through fenestration due to solar radiation

c) To measure air leakage through windows

- a)125 cfm
- b)100 cfm
- c) 200 cfm
- d) none of the above
- 47. What is the efficiency of motor with the following nameplate details 22 kW, 415V, 42 A, 0,8 p.f, 1475 rpm?
 - a)94.5% b) 91% c) 89.9% d) None of the above
- 48. A hotel building has 14 floors, each of 1000m² area, If the Lighting Power Density is 10.8 per m² the interior lighting power allowance for the hotel building is______
 - a)110800 W b) 129600 W c)151200 W d) 186600 W
- 49. A pump with 230mm diameter impeller is delivering a flow of 150 m³/hr. If the flow is to be reduced to 110m³ /hr by trimming the impeller, what should be the approximate size of the impeller?
 - a)207mm b)175 mm c) 169 mm d)195 mm
- 50. What is the main advantage of using a rotary screw air compressor over a reciprocating compressor?
 - a) Lower initial cost

- b) Continuous, pulsation-free air delivery
- c) Higher maximum pressure
- d) None of the above

SECTION -II: SHORT DESCRIPTIVE QUESTIONS

Marks 8x5 = 40

- (i) Answer all EIGHT questions
- (ii) Each question carries FIVE marks
- A 3 phase Induction motor has the following details:
- 1 Name plate details: 55 kW,415 V,95 A,0.9 p.f, 50 Hz

Running load details: 410 V,75 A,0.80 p.f, 48 Hz

Calculate the following:

- a) loading percentage,
- b) Rated efficiency,

Ans:

Actual power drawn by the motor = $1.732 \times 410 \times 75 \times 0.80 / 1000 = 42.6 \text{ kW}$ Rated input power = $1.732 \times 415 \times 95 \times 0.90 / 1000 = 61.5 \text{ kW}$

Percentage loading of motor = 42.6 / 61.5 = 69.3 %Rated efficiency of motor $= (55 / 61.5) \times 100 = 89.4\%$

2 Match the following:

Each 1 mark

Column A	Column B	
1. Envelope Performance Factor (EPF)	a. Lighting System Efficiency	
2. Luminous Efficacy	b. Heat Storage in Building Materials	
3. Economizer	c. ECBC Compliance	
4. Thermal Mass	d. Building Energy Performance Modeling	
5. Energy Simulation Software	e. Outdoor Air for Free Cooling	

Solution:

Column A	Column B	
1. Envelope Performance Factor (EPF)	c. ECBC Compliance	
2. Luminous Efficacy	a. Lighting System Efficiency	
3. Economizer	e. Outdoor Air for Free Cooling	
4. Thermal Mass	b. Heat Storage in Building Materials	
5. Energy Simulation Software	d. Building Energy Performance Modeling	

A cooling water pump has a positive suction head of 5 meters. The discharge pressure is 3.0 kg/cm², and the water flow rate is 150 m³/hr. Determine the pump efficiency given that the actual power input of the connected motor is 18.0 kW and the motor operates with an efficiency of 85%.

Solution:

Flow Rate: 150 m³/hr Total Head: 30-5 = 25m

Power input to pump = 18*0.85 = 15.3 kW

Hydraulic Power = (150/3600)*25*9.81 = 10.2 kW

Pump Efficiency = 10.2/15.3 = 66.7%

A steel industry has 100 MW of captive power plant with 2 nos. of identical extraction condensing steam turbine. Power demand is 80 MW. The turbine specific condensing load is 3.20 kg/kWh and heat rejection in condenser is 560 kCal/kg.

Cold cooling water temperature: 32.0 °C Hot cooling water temperature 39.2 °C

Calculate the following:

- a) The Cooling Water circulation flow (m³/hr) through both condensers, If only one cooling tower supplies water to condenser of both the steam turbines.
- b) Make-up water flow rate (kg/hr) to basin, assuming blowdown loss is 1.0 % of circulation flow.

Solution:

Condenser heat load = (3.2*80000*560/1000000) = 143.36 MkCal/hr Circulated cooling water flow = (143.36*1000000/7.2/1000) = 19911m³/hr

Evaporation losses = 0.00085*1.8*19911*7.2= 219.3 m³/hr

Blowdown loss = $19911*0.01 = 199 \text{ m}^3/\text{hr}$

Water makeup to cooling tower = $219.3+199 = \frac{418.4 \text{ m}^3/\text{hr}}{418.4 \text{ m}^3/\text{hr}} = \frac{418400 \text{ kg/hr}}{418.4 \text{ m}^3/\text{hr}} = \frac{418400 \text{ kg/hr}}$

5. A process engineer develops a scheme to put 500 TR absorption-based refrigeration system to bring down process fluid temperature from 34 °C to 26 °C and this will result in higher production by 10%. 5 TPH excess steam is available in the plant and this new scheme utilizes this excess steam. COP of refrigeration system is 0.65 and available latent of steam for refrigeration system is 540 kcal/kg.

- b) Estimate required Cooling water (m³/hr), if available approach in condenser is 10 °C.2 Marks

= 4.3 TPH

Solution:

Energy required for refrigeration system

500*3024/0.65 = 2326153.8 kcal/hr

Steam needed for refrigeration system

2326153.8/540

Steam utilization for VAM = 4.3 TPH

Required condenser duty = 3838153.8 kcal/hr

2326153.8+(500*3024)

Required Cooling water = $383.8 \text{ m}^3/\text{hr}$

3838153.8/10

A process plant continuously operates a furnace oil operated DG set of capacity 3.0 MW to avoid any process safety incident in case of tripping of critical equipment on power failure. Total critical load on DG set is 2.5 MW and exhaust flue gas at 430 deg.C is vented as original design intent was to operate DG set intermittently only during power failure. Since it is being operated continuously, the process team developed a scheme to generate saturated steam at 5 bar(g) using the waste heat boiler. Other operating parameters are given below:

Specific heat of flue gas 0.24 kcal/kg-Deg.C

Final stack temperature to avoid Sulphur dewing 210.0 Deg.C
Flue gas flow 17.5 TPH
Sat. temp. of steam at 5 barg 159.0 Deg.C
Latent heat at 5 barg 498.0 kcal/kg
Feed water temperature 130.0 Deg.C

Calculate the quantity of steam generated from waste heat boiler in TPH.

Solution:

Heat available for steam generation= 17500*0.24*(430-210) = 924000 Kcal/hr Steam Generation= 924000/(498+(159-130)) = 1753.3 kg/hr = 1.75 TPH

7 List five energy efficiency measures in Compressed air system.

Solution:

Book 3, Refer Page 101

Analyse the following data collected for a water pump. If the operating head is 16m explain what will happen to other parameters.

Design Parameters	Values
Flow (Q)	40 lps
Head (H)	20 m
Power(P)	15 kW
Efficiency	51%

Solution:

- 1. If the operating head is 16m instead of 20 m, the operating flow will be higher than the rated flow.
- 2. Since the operating point has deviated from the BEP, the operating efficiency will be less than design efficiency.
- 3. Since, the flow has increased and pump efficiency decreased than rated, the operating power demand will be more than the rated power.

- A 20 MW co-generation plant operates at a daily load factor of 85% and 8% auxiliary power consumption. The power is generated at 11 kV. Out of the total energy generated, 45% is exported to the grid through a 15 MVA transformer with 99% efficiency. Additionally, 35% of the generated energy is supplied to mill motors at 600 Volts through an 8 MVA step-down transformer with 98.5% efficiency. The remaining energy is used for other LT loads and auxiliaries at 415 Volts through a 4 MVA transformer with 98.2% efficiency. Calculate the following:
 - 1. Daily energy generation in MWh.
 - 2. Daily energy exported in MWh to the grid at 33 kV.
 - 3. Daily mill motors consumption in MWh at 600 V.
 - 4. Daily LT loads and auxiliary consumption in MWh at 415 V.
 - 5. Daily transformer losses in kWh and % transformer losses.

Solution

1. Daily Energy Generation Calculation

Gross energy generated=Plant capacity×Load factor×Hours per day Gross energy generated

=20 MW×0.85×24 hours Gross energy generated=408 MWh per

day

Net energy available after auxiliary consumption:

Net energy available=Gross energy generated×(1–Auxiliary power consumption) =408 MWh×0.92 = 375.36 MWh

2. Energy Exported to the Grid

Energy available for

exported =Net energy available×45% =375.36 MWh×0.45 =168.912 MWh

Energy exported to the grid after transformation loss=168.912 MWh×0.99 =167.223 MWh

3. Daily Mill Motors Consumption

Energy available

for mill motors =Net energy available ×35% =375.36 MWh ×0.35 =131.376 MWh

Energy supplied to mill motors after transformation loss = 131.376 MWh×0.985 =129.278 MWh

4. Daily LT Loads and Auxiliary Consumption

Energy available to LT loads and auxiliaries = =375.36 MWh×0.20 =75.072 MWh

Energy supplied to LT loads and auxiliaries after transformation loss = 75.072×0.982 = 73.78 MWh

5. Calculate Daily Transformer Losses in kWh and % Transformer Losses

Total Transformer Losses:

Grid Transformer Losses+Mill Motors Transformer Losses+LT Transformer Losses Total I osses=

=(168.912-167.223)+(131.376-129.278)+(75.072-73.78) 1,689 kWh+2,098 kWh+1,292 kWh Total losses=5,079 kWh

Percentage of Transformer Losses from Net Generation:

5079/408000 = 1.24%

L2. As part of a management initiative to advance green energy in a new process plant, a process engineer is assessing the economic viability of a 650 TR chiller. She is considering proposals for both LiBr-based vapor absorption chillers and vapor compression refrigeration systems. While power is sourced from renewable energy, the steam required is partially generated from excess process heat and additionally from firing furnace oil.

COP of advance Vapor Absorption Chiller : 1.3 COP of Vapor Compression Chiller : 4.50

Net steam price including excess steam and from boiler: 1500.00 INR/MT

Net Power cost from green source : 7.20 INR/kWh

Price of Cooling water : 3.00 INR/M3

Cooling water range : 8°C

Specific steam heat available for chiller: 490.0 kcal/kg

Evaluate both the offers and find out the offer which is economical in terms of operating cost.

Solution:

Vapor Absorption chiller

Chilling capacity 650.0 TR

Required heat duty 1965600 kcal/hr

Heat equivalent input to VAM = 1965600/1.3 = 1512000 Required Steam flow = 1512000/490 = 3084 kG/hr

Condenser heat duty = (650*3024) + (3084*490) = 3476760 kcal/hr

Required Cooling Water = 434.6 M3/hr

Operating cost of Vapor Absorption Chiller =(3084*1.5)+(434.6*3) = 5930 INR/hr

Vapor Compression chiller

Chilling capacity 650.0 TR

Required heat duty 1965600 kcal/hr Required Power consumption 508 kW

Condenser heat duty = (650*3024)+(508*860)=2402480kcal/hr

Required Cooling Water = 300 M3/hr

	Operating cost of Vapor Absorption Chiller = (508*7.2)+(300*3) = 4558 INR/hr			
	Hence, operating vapor compression chiller is economical.			
L3	a) Match the following: (4 Marks)			
	1 Prescriptive Approach	Exterior façade		
	2 Whole Building Performance Approach	2. Trade-Off option		
	3 Building envelope	3. light admitting potential		
	4 Effective Aperture	4. Uses simulation to show compliance for the entire building		
				
	b. Fill in the following blank statements:			
	The Effective Aperture (EA) or light admitt determined by multiplying the Visible Ligh of the building.	ing potential of a glazing system is t Transmittance (VLT) of the glazing by the		
	Thermal emittance is the relative ability ofIf a window has a SHGC of 0.25 and the t	a material tothe absorbed heat. otal incident solar radiation is 600 W/m², the		
	solar heat gain through the window is 4. The emissivity of a material is the ratio of energy radiated by a particular material to			
	energy radiated by a at the same temperature. 5. As per ECBC the unit of Energy Performance Index (EPI)			
	6. Fenestration surface having a slope of less than 60 degrees from the horizontal plane is termed			
	Solution:			
	a)			
	Prescriptive Approach – b			
	2. Whole Building Performance Approach –	d		
	3. Building envelope – a			
	4. Effective Aperture – c			
	b)			
	1. The Effective Aperture (EA) or light admitt	• • • • • • • • • • • • • • • • • • • •		
		t Transmittance (VLT) of the glazing by the		
	Window-Wall Ratio (WWR) of the building.			
	2. Thermal emittance is the relative ability of			
		otal incident solar radiation is 600 W/m², the		
	solar heat gain through the window is 150			
	4. The emissivity of a material is the ratio of			
	energy radiated by a black body at the sa			
	5. As per ECBC the unit of Energy Performa	, , <u>———</u>		
	6. Fenestration surface having a slope of les	s man ou degrees from the norizontal plane		

	is termed Skylight . (6 Marks)
L4	The lumen (Im) is the photometric equivalent of the Watt, weighted to match the eye
L4	response of the "standard observer," with blue light receiving the greatest weight - False. 2. The CRI of a lamp is 100 if it renders the color of the chips identical to the reference light source, indicating perfect color rendering True. 3. A commercial building with a high window-to-wall ratio (WWR) and low SHGC glazing will experience higher cooling loads, as more solar heat will be transmitted through the windows - False. 4. Rotary screw compressors are preferable for fluctuating air demand- False. 5. Operating compressors at lower delivery pressures always results in higher energy efficiency- True. 6. Heat of compression dryers have higher operating costs compared to heatless purge dryers- False 7. Using variable speed drives in compressors can eliminate unloaded running conditions and save energy-True 8. Motor efficiency generally increases as the motor's rated capacity increases. True 9. The power factor of an induction motor improves as the load on the motor decreases. False
	 A decrease in supply voltage by 10% will decrease the torque of the motor by approximately 19% - False
L5	A 2-stage reciprocating compressor is supplying nitrogen from low pressure header to high pressure vessel. This high-pressure nitrogen is only used during any process upset. Compressor is cut-off, once vessel pressure reaches 45 barg, and started, when vessel pressure comes down to 35 barg. During energy audit, it was observed that compressor is started at gap of every 36 hrs when there is no intended consumption. Other data is given below:
	Vol. of high pressure N2 vessel 11.5 m³ Vessel temperature 35.0 Deg.C Initial gas density 50.3 kg/m3 End gas density 39.4 kg/m3 Compressor load kW drawn 30.0 kW Compressor capacity at constant suction pressure 250.0 kg/hr i. Estimate the leak rate (kg/hr). ii. Estimate the energy saving potential (kWh/Annum), if all leaks are attended. Consider operating time of 8760 hrs/annum.
	Solution:
	Initial Vessel Pressure 45.0 barg End vessel pressure 35.0 barg Initial gas density 50.3 kg/m3 End gas density 39.4 kg/m3

Change in gas quantity in 36 hrs 125.7 kg N2 leakage rate 3.5 kg/hr

Time needed for compressor run 0.51 hrs or 30.6 min

% time of compressor running 1.40 % Running time of compressor per annum 122.3 hrs

Power consumption per annum due to air leakage 3670.0 kWh/Annum

Energy Saving Potential 3670.00 kWh/Annum

L6 a) During performance guarantee test of an induced draft cooling tower, it was found that design approach of cooling tower is not achieved. As one of the probable causes, the team decided to check the efficiency of cooling tower fan. If design static efficiency is 70%, estimate the operating static efficiency using following parameters:

Pitot tube coefficient 0.9

Velocity pressure 49.0 mmWC

Air Density at operating condition 1.129 kg/m3

Duct diameter 2.1 m

Differential pressure across fan 130.0 mmWC

Motor shaft Power 190.0 kW Motor Efficiency 95.0 % Gear Box Efficiency 96.0 %

- b) A centrifugal fan drawing 54 kW and operating at 1440 rpm is delivering air at 30,000 m³ /hr. The head developed by the fan is 400 mm WC. If the speed is decreased by 200 rpm, calculate the following:
 - 1. Air flow in m³ / hr
 - 2. Static pressure in mm WC
 - 3. Power drawn in kW

Solution:

a)

Air Velocity = 26.3 m/secDuct Area = 3.5 m^2 Vol. flowrate = $92.0 \text{ m}^3/\text{sec}$

Air kW transferred = 92*130/102 = 117.25 kW Power input to fan = 190*0.95*0.96 = 182.4 kW Static Efficiency = 117.25 / 182.4 x100 = 64.28%

b)

- 1. Airflow in m^3 / hr = $(1240/1440) \times 30000 = 25833 \text{ m}^3$ /hr
- 2. Static pressure in mm WC = $(1240/1440)^2$ x 400 = 296.6 mm WC
- 3. Power drawn in kW = $(1240/1440)^3 \times 54 = 34.48 \text{ kW}$

Appl. No:	Paper 3 Code: Pink	
Name :		
(To be written by the candidate)		

23rd NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS – MARCH, 2023

PAPER - 3: ENERGY EFFICIENCY IN ELECTRICAL UTILITIES

Date: 26.03.2023 Timings: 09:30-12:30 HRS Duration: 3 HRS Max. Marks: 150

General instructions:

- o Please check that this question paper contains 10 printed pages
- o Please check that this question paper contains 64 questions
- o The question paper is divided into three sections
- o All questions in all three sections are compulsory
- o All parts of a question should be answered at one place

Section - I: OBJECTIVE TYPE

- (i) Answer all **50** questions
- (ii) Each question carries **One** mark
- (iii) Please hatch the appropriate oval in the OMR answer sheet with HB pencil only, as per instructions

Marks: $50 \times 1 = 50$

1.	If the compresso would be	· ·	in 10 seconds and	d unloads in 20 seconds, the air leakage
	A) 67 cfm	B) 100 cfm	C) 10 cfm	D) 133 cfm
2.	The compressor	capacity of a recipi	cocating compress	or is directly proportional to
		•		
	A) Speed	B) Pressure	C) Volume	D) All
3.	Find the correct equation, if $M =$ makeup water (from the mains water supply), $E =$ losses due to evaporation, $B =$ losses due to blow-down and $D =$ drift losses of a cooling tower:			
	$\mathbf{A)}\;\mathbf{M}=\mathbf{E}+\mathbf{B}+$	D	B) M = E	+ B - D
	C) M = E - B + 1	D	D) M = E	- B – D
4.	If temperature of	f air increases, the a	amount of water va	apor needed to become saturated
	·			
	A) Increases	B) Decreases	C) not change	D) Can't say
5.				is 38 °C. Range is twice the approach,
	the effectiveness	s of the cooling tow	er is	_•
	A) 33.3%	B) 50%	C) 66.7%	D) Insufficient data

6.	Cycles of Concentration (C.O.C) of a cooling tower will depend on				
	A) TDS in circul C) both a & b		D) none of	in make-up water of the above	
7.	Lower power factor of a DG set demands				
	, , , , , , , , , , , , , , , , , , ,	ion currents ation currents	*	nge in excitation currents f the above	
8.	The unit of Ener	gy Performance I	ndex (EPI) for rat	ting the building is	
	A) kWh/sq mtr/hr		B) kWh/sq D) sq mtr/V	Wh/yr	
9.	Which of the fol	lowing statements	s regarding ECBO	C are correct?	
	 A) ECBC defines the norms of energy requirements per cubic metre of area B) ECBC does not encourage retrofit of Energy conservation measures C) ECBC prescribes energy efficiency standards for design and construction of commercial and industrial buildings D) One of the key objectives of ECBC is to minimize life cycle costs (construction and operating energy costs) 			uction and	
10.				rea. If the Lighting Power Densi	
	is 10.8 W/m^2 , the	e interior lighting	power allowance	e for the hotel building is	·
				D) none of the above	
11.		power station of 2 nual Plant Load F		ed capacity generated 14,000 m	illion units
				D) none of the above	
12.	AT & C losses n	neans	·		
		nsmission and cur			
		chnical and comp nical and commerc			
		smission and con			
13.	The nearest kVA	ar compensation r	equired for impro	oving the power factor of a 1000 for is) kW load
	A) 328 kVAr	B) 750 kVAr	C) 1000 kV	Ar D) none of the above	
14.	Harmonics are g	enerated by	·		
	A) HT motors		B) transfor		
	C) LT motors		D) variable	le frequency drives	
15.		and copper loss of an at is the total loss		nsformer is 900 Watts and 6400 former loading?	Watts
	A) 4100 Watts	B) 6850 Wat		·	
16.	Parallel operatio	n of two identical	fans in a ducted	system.	
	A) will double th	ne flow			
	· ·	ne fan static pressi			
	D) will not doul	flow by more than	n two times		
	by will not doub	JIC 1110 11			

17.	Humidification involves			
	A) reducing wet bulb temperature and specific humidity			
	B) reducing dry bulb temperature and specific humidity			
	C) increasing wet bulb temperature and decreasing specific humidity			
18.	D) reducing dry bulb temperature and increasing specific humidity Coefficient of Performance (COP) for a refrigeration compressor is given by			
10.				
	A) power input to compressor (kW) / cooling effect (kW)			
	B) cooling effect (kW) / Power input to compressor (kW) C) Q x CP x (Ti – To) / 3024			
	D) none of the above			
19.	In a water Lithium bromide refrigeration system, the concentration of the lithium bromide			
	increased, in the			
	A) Evaporator B) Condenser C) Generator D) Absorber.			
20.	Integrated Part Load Value (IPLV) in a vapor compression refrigeration refers to average of			
	at partial loads.			
	A) TR/kW B) cooling effect C) kW/TR D) kW			
21.	is a measure of effect of light on the perceived colour of objects.			
	A) lux B) lumens C) CRI D) lamp circuit efficacy			
22.	Lux is defined as			
	A) ratio of luminous flux emitted by a lamp to the power consumed by the lamp			
	B) lux per square meter			
	C) lumen per square feet			
23.	D) none of the above			
23.	Which of the following is not used as a sensor for lighting occupancy linked control?			
2.4	A) Infrared B) acoustic C) ultrasonic D) pressure			
24.	In an Energy Efficient Motor, the efficiency is increased by increasing			
	A) stator winding cross sectional area B) fan losses			
25	C) conductor resistance of rotor D) stator winding resistance By locating the capacitor near the motor terminal			
25.				
	A) motor power factor increases B) motor energy consumption decreases C) system power factor decreases D) none of the above			
26.	A pump is handling water at 25 deg C and delivering 200 m ³ /hr. If the water temperature is 50			
20.	deg C then the flow will			
	A) Increase by 50% B) decrease by 50% C) double D) None of the above			
27.	If distribution line has losses of 100kW and voltage is raised from 33KV to 66KV,			
	then line losses will be			
	A) 50KW B) 100KW C) 200KW D) 25KW			
28.	A 2000KVA Transformer has full load losses of 20KW. If transformer is running at			
	50% loading, then what will be the load losses?			
	A) 10KW B) 5 K W C) 20KW D) None of the above			
29.	Slip% of Induction Motor is calculated as (Ns= Synchronous Speed, Nr= Full Load			
	Rated Speed)			

	A) (Ns-Nr)x100/Ns B) (Ns-Nr)x100/Nr			
	C) (Nr-Ns)x100/Ns D) (Nr-Ns)x100/Nr			
20				
30.				
	output?			
	A) Refrigeration Dryer B) Heat of Compression Dryer			
	C) Heatless Purge type Dryer D) Blower Reactivated Type Dryer			
31.	For centrifugal fans, relation between Pressure (P) and speed (N) is given by			
	·			
	A) $P1/P2 = N1/N2$ B) $P1/P2 = N1^2/N2^2$			
	C) $P1/P2 = N1^3/N2^3$ D) None of the above			
32.	Pump Shaft Power is			
	A) Hydraulic Power/ Motor Efficiency			
	B) Hydraulic Power/ Pump Efficiency			
	C) Hydraulic Power* Pump Efficiency			
	D) None of the above			
33.	The heat load of the cooling tower depends on			
	A) Range B) Approach			
	C) Cooling tower fan speed D) Wet Bulb Temperature			
34.				
	Wet Bulb Temp. = 27 °C, Cooling Water in Temperature = 45°C, Cooling Water out			
	Temperature = 35° C			
	What is the cooling tower effectiveness?			
	A) 50% B) 44.44% C) 55.55% D) None of the above			
35.				
33.	Power as 418 KVAR.			
	A) 0.89 B) 0.51 C) Leading 0.94 D) 1			
36.	Synchronous speed of motor is directly proportional to			
	A) No. of Poles B) Frequency C) Terminal Voltage D) All of the above			
37.	Which of the following is not a positive displacement compressor -			
	A) Reciprocating B) Screw C) Roots Blower D) Centrifugal			
38.	Adsorption drying of air is achieved using			
	A) Activated alumina B) Carbon Molecular Sieves			
20	C) Zirconium Molecular Sieves D) None of the above			
39.	9. If air leak quantity is 5 m ³ /min, what will be power loss per hour in compressor which is having specific power consumption of 0.09 kWh/m ³			
	A) 27 Units/hr B) 0.45 Units/hr C) 72 Units/hr D) None of the above			
I	D) Holle of the doore			

40.	Dry Bulb and Wet bulb temperature will be same at				
	A) 0% Relative Humidity		B) 50% Rela	B) 50% Relative Humidity	
	C) 100% Relative Humidity		D) None of		
41.	What will be ven	tilation rate of 15	mx10mx5m room havin	g ACH of 10	
	A) $750 \text{ m}^3/\text{hr}$		B) 7500 m³/h		
	C) 75000 m ³ /hr		D) None of t	he above	
42.	100 kCal/min he	at transfer rate is	equivalent to		
	A) 1.98 TR	B) 0.98 TR	C) 19.8 TR	D) None of the above	
43.	Which of the foll	lowing equipment	is having least compres	sion ratio?	
	A) Compressor	B) Blower	C) Axial Fan	D) Radial Fan	
44.	Flow control of f	ans can be achiev	red by		
	A) Changing pulle	ey dimensions	B) Damper C	ontrol	
	C) VFD		D) All of the	e above	
45.	Which of the follower?	lowing is used to	capture water droplets in	the air stream leaving the cooling	
	A) Splash fill B) Film fill				
	C) Drift eliminator D) Any of the above				
46.	. If evaporation loss of Cooling tower is 10 M³/Hr, what will be make up water flow at a COC				
	of 5?				
	A) $2.5 \text{ m}^3/\text{hr}$		B) 12.5 m³/h :	r	
	C) 15 m ³ /hr D) None of the above				
47.	Calculate the Vo m/sec?	lumetric Flow (m	³ /sec) in a pipe with a di	ameter 200 mm and Velocity 1.5	
	A) 0.19 m ³ /sec B) 0.015 m ³ /sec				
	C) 0.047 m³/sec D) 0.012 m³/sec				
48.	A pump discharge has to be reduced from 120 m ³ /hr to 100 m ³ /hr by trimming the impeller. What should be the percentage reduction in impeller size?				
				D) 02 20/	
	A) 33.3%	B) 50%	C) 16.7%	D) 83.3%	
49.	If the Collection	Efficiency is 90%	and Billing Efficiency	is 95% then AT&C losses are	
	A) 85.5%	B) 14.5%	C) 15%	D) None of the above	
				2,11010 01 110 40010	
50.					
	a. Does notb. Halved	cnange			
	b. Halvedc. Doubled				
	d. Less than	double			

----- End of Section - I -----

Section - II: SHORT DESCRIPTIVE QUESTIONS

- (i) Answer all **Eight** questions
- (ii) Each question carries **Five** marks
- S-1 A textile industry had installed a 2 MVA transformer. The initial demand of the plant was 1500 kVA with power factor of 0.75. Industry has installed 450 kVA capacitor at the motor end.

Marks: $8 \times 5 = 40$

Calculate the following:

- 1. Reduction in apparent power (kVA)
- 2. Improved power factor and
- 3. Revised % loading of transformer after installing the capacitor
- **Ans** Real / True Power, $kW = 1500 \times 0.75 = 1125 \text{ kW}$

Old Reactive Power, $kVAr = Sqrt \text{ of } [(1500)^2 - (1125)^2] = 992 \text{ kVAr}$

After installation of 450 kVA capacitor,

Revised reactive power, kVAr = 992 - 450 = 542 kVAr

Revised apparent power, $kVA = Sqrt \text{ of } [(1125)^2 + (542)^2] = 1248 \text{ kVA}$

Reduction in apparent power, kVA = 1500 - 1248 = 252 kVA

Improved power factor = 1125 / 1248 = 0.90.

Revised % loading of transformer = 1248 / 2000 = 62.4%

S-2 Find out the Effective Aperture (EA) of following two glazing and comment about compliance with ECBC.

Case # 1

Window to Wall Ratio (WWR): 0.2

Visible Light Transmittance (VLT): Transparent

Case # 2

Window to Wall Ratio (WWR): 0.45

Visible Light Transmittance (VLT): 0.2

Ans Case # 1 $EA = VLT \times WWR$

 $EA = 1.0 \times 0.2 = 0.2$

As EA > 0.1, Glazing complies with ECBC

Case # 2 $EA = 0.2 \times 0.45 = 0.09$.

As EA < 0.1, Glazing does not comply with ECBC

S-3 A three-phase induction motor has the following details: -

Name plate details : 55 kW, 415V, 95A, 0.90 PF, 50 Hz

Running load details : 410V, 75A, 0.80 PF, 48 Hz

Ans Actual power drawn by the motor = 1.732*410*75*0.80/1000 = 42.6 Rated input power = 1.732*415*95*0.90/1000 = 61.5 Percentage loading of motor = 42.6/61.5 = 69.3% Rated efficiency of motor = 55/61.5 = 89.4% S-4 In an engineering industry, compressed air delivered is 500 CFM (FAD) and compressor discharge pressure is 6 kg/cm² (gauge). Calculate the size of	kW I the
Percentage loading of motor = 42.6/61.5 = 69.3% Rated efficiency of motor = 55/61.5 = 89.4% S-4 In an engineering industry, compressed air delivered is 500 CFM (FAD) and compressor discharge pressure is 6 kg/cm² (gauge). Calculate the size of	I the
Rated efficiency of motor = 55/61.5 = 89.4% S-4 In an engineering industry, compressed air delivered is 500 CFM (FAD) and compressor discharge pressure is 6 kg/cm² (gauge). Calculate the size of	f the
S-4 In an engineering industry, compressed air delivered is 500 CFM (FAD) and compressor discharge pressure is 6 kg/cm² (gauge). Calculate the size of	f the
compressor discharge pressure is 6 kg/cm ² (gauge). Calculate the size of	f the
compressor discharge pressure is 6 kg/cm ² (gauge). Calculate the size of	f the
	ature ———
header by considering velocity of compressed air 6 m/s. Assume Tempera remains constant.	
Ans Quantity of Compressed Air = 500CFM = 14.17 m ³ /min.	
Atmospheric pressure $= 1.013 \text{ kg/cm}^2 \text{ (a)}$	
Apply gas law assuming temperature remains constant	
P1*V1 = P2*V2	
$P1*V1/P2 = 14.17 \text{ m}^3/\text{min} * 1.013 \text{ kg/cm}^2/7.013 \text{ kg/cm}^2$	
$V2 = 2.05 \text{ m}^3/\text{min.} = 0.03417 \text{ m}^3/\text{ sec.}$	
Quantity of Air Flow = Area of Pipeline * Velocity of Air Flow	
0.03417 = 22/7*D2/4*6	
Diameter of pipeline = 0.085 mtr = 3.35 Inch S-5 A multi storied office has centralized air conditioning system by the storied office has centralized air conditioning system by the storied office has centralized air conditioning system by the storied of the st	
S-5 A multi storied office has centralized air conditioning system by the chilled water. The chilled water inlet and outlet temperatures	_
13°C and 9 °C respectively. The chilled water pump discharge pres	ssure
is 4.2 kg/cm ² g and the suction is 10 meters above the pump center. The power drawn by the chilled water pump's motor is 75 kW and	
efficiency of 92 %. The chilled water pump efficiency at the operation	
point from pump characteristic curve is 65 %. Find out the operation	
refrigeration load in TR.	
Ans Total head of the Chilled Water Pump = $(4.2*10) - 10$	
= 32 Meter Shaft Power of the Pump $= 75*0.92 = 69 kW$	
Flow rate = $((69 \times 1000) \times 0.65) / 32 \times 1000 \times 9.81$	
$= 0.14287 \text{ m}^3/\text{s} = 514.33 \text{m}^3/\text{hr}$	
Refrigeration load = 514330*4/3024 = 680 TR S-6 Discuss in brief about working principal Membrane Dryer for Compressed	Δir
Ans: Refer guide book 3, Page no 96	4 111 .
S-7 In a DG set, the generator is rated for 1000 kVA, 415V, 1390 A, 0.8 pf,	1500
S-7 In a DG set, the generator is rated for 1000 kVA, 415V, 1390 A, 0.8 pf, rpm. The full load specific energy consumption of this DG set as measure	
the energy auditor is 3.7 kWh per liter of fuel and air drawn by the DG set	-
kg/kg of fuel. The energy auditor recommended for a waste heat recovery sy	

The exhaust gas temperature difference across the waste heat recovery boiler is 215 °C. The flue gas temperature after waste heat recovery system is maintained at 180°C to avoid corrosion. Calculate the steam generation in kg/hr from waste heat recovery boiler if the heat gain by feed water is 580 kCal/kg, specific gravity of fired fuel oil of 0.86 and specific heat of flue gas is 0.23 kCal/kg ⁰C. Ans 1 Rated kVA of Diesel Generator 1000 2 | Rated kW @ 0.8 pf 800 3 | Specific fuel consumption (kwh/lts) 3.7 4 | Specific gravity of fuel oil 0.86 Oil consumption at full load in kg/hr 5 ((Sl. No.2*4)/3) 185.95 6 | Air supplied per kg of fuel (kg) 25 7 | Mass of flue gas (Sl. No. 6+1 kg) Kg/Kg of fuel 26 8 Mass of flue gas kg per hour (Sl. No. 7*5) 4834.60 9 Delta T across waste heat recovery system 215 Heat available for recovery in WHRB (Kcal/kg) 239070.7 10 (Sl. No. 8 *9 *0.23) 12 | Heat Gain by feed water in WHRB (Kcal/Hr) 580 Quantity of Steam Generated (Kg/Hr) (Sl. 10/12) 412 **S-8** Fill in the blanks for the followings: a) ECBC is applicable to commercial buildings having contract demand of b) In a centrifugal fan if speed is reduced by 30% static pressure will reduce c) If the speed of a reciprocating pump is reduced by 30 %, the power consumption will reduce by_____%. d) The unit of specific humidity of air is e) The synchronous speed (rpm) of a 2 pole induction motor at 49 Hz supply frequency is__ a) 120 KVA Ans b) 51% c) 30% d) grams moisture/kg of dry air

----- End of Section - II -----

e) 2940 rpm

Section – III: LONG DESCRIPTIVE QUESTIONS

- (i) Answer all **Six** questions
- (ii) Each question carries **Ten** marks

L-1A) State: Increases or Decreases (1 Mark each) 1. If air dry bulb temperature is increased then Relative Humidity will 2. In a pumping system, if the suction side liquid level is increased then NPSHa will 3. If the air temperature increases at the inter-cooler outlet, then air compressor power consumption will 4. A blower is retrofitted with a VFD and operated at full speed. The power consumption 5. As the design speed of the motors decreases the capacitor KVAr requirement will 1. Decreases Ans 2. Increases 3. Increases 4. Increases 5. Increases L-1 B) Match the following (1 Mark each) 1. Pitot Tube A. Cooling Tower 2. Refrigerant Drier B. Lighting Control 3. Condenser C. Gas velocity in ducts 4. Spray Nozzles D. Compressed Air System 5. Occupancy Sensor E. Refrigeration System **Ans** 1. Pitot Tube C. Gas Velocity in ducts 2. Refrigerant Drier D. Compressed Air System 3. Condenser E. Refrigeration System 4. Spray Nozzles A. Cooling Tower 5. Occupancy Sensor B. Lighting Control L-2 During the energy audit of central chiller plant, following parameters were noted. Chilled water flow (Inlet to evaporator of chiller): 250 m³/hr Chilled water inlet temperature: 12 °C • • Chilled water outlet temperature: 7 °C • Motor Input Power: 350 kW Motor Efficiency: 90% Condenser water inlet temperature (going to chiller or outlet of cooling tower): 31 °C Condenser water outlet temperature (leaving from to chiller or inlet to cooling tower): 36 °C • Wet Bulb temperature of ambient air (going to Cooling tower): 28 °C Make up water TDS (for Cooling tower): 180 ppm Permissible limit of TDS for cooling water: 720 ppm Condenser cooling capacity is 25% higher than the evaporator cooling capacity. Calculate the following:

Marks: $6 \times 10 = 60$

kW/TR of chiller compressor
 COP of the chiller
 Effectiveness of cooling tower
 Evaporation loss, m³/hr
 3 m

Blow down quantity, m³/hr 1 m

• Make-up water requirement, m³/hr ignoring no drift loss. 1 m

Ans: Chiller machine capacity, $TR = [250 \times 1000 \times 1 \times (12 - 7)] / 3024 = 413.4 TR$

kW/TR of chiller compressor = $(350 \times 90\%) / 413.4 = 0.762$

COP = (413.4*3024) / (350*0.9*860) = 4.6

Effectiveness = (36 - 31) / (36 - 28) = 62.5%

Cycle of Concentration, COC = 720 / 180 = 4

Condenser capacity, $TR = 1.25 \times 413.4 = 516.75 TR$

Condenser water flow or cooling tower circulation flow

 $= 516.75*3024 / [1000 \times 1 \times (36 - 31)]$

 $= 312.5 \text{ m}^3/\text{hr}$

Evaporation loss, $m^3/hr = 0.00085 \times 1.8 \times 312.5 \times (36 - 31) = 2.3 \text{ m}^3/hr$

Blow down quantity, $m^3/hr = 2.3 / (4 - 1) = 0.797 m^3/hr$

Make up water, $m^3/hr = 2.3 + 0.797 = 3.097 \text{ m}^3/hr$

L-3 A 30 MW coal fired thermal power plant uses conventional wet ash disposal system for ash evacuation. During an energy audit at ash slurry disposal pump house it was observed that only one ash slurry disposal series is continually operated out of installed three numbers of series. The other data collected and measured in the pump house are as follows:

Name of operating series - Series B

Number of pumps per series - Two

Rated parameters of each pump- Flow 815 m³/hr, Head 33 mWc,

Slurry Flow rate measured at second series pump discharge- 752 m³/hr

Suction Head to 1st pump- +2.6 meter

Final Slurry discharge pressure- 5.2 kg/cm² (g)

Differential Pressure across 1st slurry pump- 2.44 kg/cm²

Differential Pressure across 2nd slurry pump- 2.5 kg/cm²

Ash water ratio (by weight) of the slurry- 1:15

Ash slurry density- 1032 kg/m³

Electric power input to motor of 1st slurry pump- 141 kW

Electric power input to motor of 2nd slurry pump- 139 kW

Motor rating of each pump- 200 kW

Full Load Motor Efficiency- 93%

Belt Transmission Efficiency: 92%

Evaluate the following:

- i) Individual pump efficiencies if the operating motor efficiency is 92% for all pumps
- ii) Specific energy consumption of each pump (kWh/m³)
- iii) Specific energy consumption of the series (kWh/m³)
- iv) As water conservation measure the energy auditor recommended to maintain ash water ratio of slurry at 1:7 and slurry density of 1067 kg/m³, calculate the incremental power consumption of each pump and series if all other parameters are unchanged.

Ans Individual pump Efficiencies and Specific Power Consumption are as follows:

Sl. No	Pump Ref:	1st Pump	2nd Pump
1	Flow Rate $(M^3/hr) - Q$	752	752
2	Diff. Head (m) – H	24.4	25
3	Slurry Density (kg/m ³) -p	1032	1032
4	Liquid kW (LKW =Q/3600XHXpX9.81/1000)	51.60	52.87
5	Power Drawn by motor kW- Pin	141	139
6	Motor eff. % - Em	92.0%	92.0%
7	Coupling eff. % - Ec	92.0%	92.0%
8	Pump eff. % (Ep=LKW/(PinXEmXEc)X100)	43.0%	44.9%
9	Specific Energy Consumption (kWh/M³) (Pin/Q)	0.188	0.185
10	Specific Energy Consumption of series (kWh/M³)	0.3	372

In case of changing the ash water ration the following will be additional power consumption.

Sl. No	Pump Ref:	1st Pump	2nd Pump
1	Flow Rate $(M^3/hr) - Q$	752	752
2	Diff. Head – H	24.4	25
3	Slurry Density – p	1067	1067
4	Liquid kW (LKW= Q/3600XHXpX9.81/1000)	53.35	54.66
5	Motor eff. % - Em	92.0%	92.0%
6	Coupling eff. % - Ec	92.0%	92.0%
7	Pump eff. % - Ep	43.0%	44.9%
8	Power Drawn by motor kW – Pin New =LKW/(EmXEcXEp)	146.58	143.83
9	Earlier Power Drawn by motor kW – Pin	141.0	139.0
10	Inc. Power Cons. in kW = Pin New- Pin	5.58	4.83
11	Inc. Power Consumption in kW of series	10	.41

L-4 An engineering industry operating three shifts per day has replaced their old reciprocating compressors with 1000 CFM screw compressors. During the energy audit, the following data's were collected:

	Run hours counter reading		
	Start of the	End of the month	Power,kW
	month	End of the month	
Load Hours	7956	8401	166 (Loading kW)
Un-Load Hour	4918	5121	58.1 (un-loading kW)

Calculate the following:

- 1. Capacity utilization (%) of the compressor
- 2. Monthly energy consumption for the present loading of the compressor
- 3. Plant management is considering to install a 750 CFM compressor for energy savings. Estimate the energy saving for same operating load, if loading power is 125 kW and unloading power is 43.75 kW.
- 4. To meet the present air requirement, if VFD to be installed in the 1000 CFM compressor, what should be the percentage reduction in speed.

Ans

	Start of the month	End of the	Running
	Start of the month	month	Hours
Load Hours	7956	8401	445
Un-Load Hour	4918	5121	203
		Total Running	
		hrs	648

- 1. Capacity Utilization = Air delivery during the month / full load capacity = 445 x 60 x 1000 CFM / 648 x 60 x 1000 = 0.69 or 69 %
- 2. Monthly energy consumption for the present loading of the compressor

$$= (445 \times 166) + (203 \times 58.1)$$

= 85664.3 kWh

3. Monthly air requirement = $445 \times 60 \times 1000 = 26700000 \text{ C.ft}$

750 CFM compressor capacity utilization = 26700000 C.ft / 750 x 60 x 648 = 0.92

Therefore loading time = $648 \times 0.92 = 596.2 \text{ hrs}$

Unloading time = 648 - 596.2 = 51.8

Monthly energy consumption = $(596.2 \times 125) + (51.8 \times 43.75) = 76791.25 \text{ kWh}$

Energy savings per month = (85664.3 - 76791.25) = 8873.05 kWh

4. Percentage reduction in speed:

N1/N2 = T2/T1

 $N2 = T1/T2 \times N1$

 $= 445 / 648 \times N1$

= 0.69 N1

Therefore the percentage reduction is = 1-0.69 = 0.31 or 31%

L-5 A)

A trivector-meter installed in a steel plant is monitoring the maximum demand with a demand interval of 15 min. The observed maximum demand during one demand interval is given below:

Trivector-meter observation	Demand Recorded
period in Minutes	(kVA)
3	9634
4	10257
3	8436
5	9847

Calculate the following:

- a. Recorded maximum demand during the cycle.
- b. Calculate the demand reduction and capacitor kVAr required for improving power factor to 0.99 from average observed power factor of 0.92.

Ans			
	Maximum Demand Registered	9631.533	kVA
	Observed PF	0.92	Pf
	Demand in kW	8861	kW
	Improved PF	0.99	Pf
	New demand with improved PF	8951	kVA
	Reduction in demand	681	kVA
	Capacitor required	2508	kVAr

L-5 B)

A spinning unit proposed to replace 50 no's of 22kW IE2 motors with IE3 motors under National Motor Replacement Programme. The present operating details of the motors are as follows:

Average Loading of the motor: 74%

IE2 Motor Efficiency:90%

IE3 Motor Efficiency:93%

Annual Operating Hours: 7000 Hrs

Energy Cost: Rs.10 / kWh

CO₂ Emission from electricity: 0.85 Kg/kWh

Calculate annual energy savings and emission reduction in Tons of CO₂.

Ans	Motor rating	22	kW
	Percentage Loading	74%	%
	Present load	16.28	kW
	IE2 motor efficiency	90%	%

	Input power for the present load	18.08	
	IE3 Motor efficiency	93%	%
	Input power for the present load	17.50	
	Savings in power	0.58	kW
	Operating hours	7000	Hr
	No. of Motors considered for replacement	50	Nos.
	Annual energy savings	4084.59	kWh
	Annual cost savings (Rs.10/kWh)	40845.88	Rs.
	Annual cost savings for 50 Motors (Rs.)	20.4	Rs. Lakhs
	Average CO2 reduction	0.85	kg of CO2/kWh
	Estimated CO2 reduction for 50 motors	173.595	Tons
L-6	A)		
	In a contilation dust of 0.6 0.6	4lan ayaman1 4	of ain magazine 1 1
	In a ventilation duct of 0.6 m x 0.6 m size,	•	•
	anemometer is 30 m/s. The static pressure at		
	is 35 mm WC. A 3 phase induction motor co	_	
	410 V at a power factor of 0.8. Find out the		
	90% and belt transmission efficiency of 98%	(density correction car	n be neglected).
Anc	Volume flow rate of the fen O	= Velocity x Area	
Ans			L .
		100 21	
	Power input to the fan shaft	$= 10.8 \text{ m}^3/\text{s}$	
	= Motor input to the fair shart = Motor input power x motor efficiency x tran	nemiceion afficiancy	
	,	<u> </u>	
	$= (\sqrt{3} \times 0.410 \times 19 \times 0.8 \times 90\% \times 98\%)$ = 9.52 kW		
	= 9.32 KW		
	Fan efficiency = Volume in m^3/s	x total pressure in mm	, WC
	ran enticlency – Volume in in /s	x total pressure in filit	1 WC
	102 v Powe	r input to the shaft in (Ŀ ₩)
	102 X 1 0 W C	i input to the shart in (K **)
	= 10.8 x [35 - (- 2	25)] x 100	
	- 10.0 K [33 (2		
	102 x 9.5	52.	
	102 X 7.0) <u>2</u>	
	= 66.7%		
L-6	B) Explain how Computational Fluid Dynam	ics (CFD) can be used	for enhancing the
	Energy Efficiency.	ico (OID) cui oc uscu	4 Marks
Ans	Refer guide book 3, Page no 165-166		1 1/14/11/19
11110	1000 galas 500k 5, 1 age 10 105 100		

----- End of Section - III ------

Marks: $50 \times 1 = 50$

22nd NATIONAL CERTIFICATION EXAMINATION FOR

ENERGY MANAGERS & ENERGY AUDITORS - JULY, 2022

PAPER - 3: ENERGY EFFICIENCY IN ELECTRICAL UTILITIES

Date: 31.07.2022 Timings: 09:30-12:30 HRS Duration: 3 HRS Max. Marks: 150

Section - I: OBJECTIVE TYPE

1.	The advantage of multi-staging compression over single stage compression is a) Lower power consumption per unit of air delivered b) High volumetric efficiency c) Decreased discharge temperature d) All of above
2.	The specific ratio as defined by ASME and used in differentiating fans, blowers and compressors, is given by a) discharge pressure/suction pressure b) suction pressure/discharge pressure c) discharge pressure/ (suction pressure + discharge pressure) d) suction pressure/ (suction pressure + discharge pressure)
3.	A device that distributes filters or transforms the light emitted from one or more lamps is a) Control gear b) Luminaire c) Lamp d) Starter
4.	For the same quantity of power handled by a distribution line, lower the voltage a) lower the current drawn and lower the distribution loss b) lower the voltage drop and lower the distribution loss c) higher the current drawn and higher the distribution loss d) higher the voltage drop and lower the distribution loss
5.	The power drawn by a centrifugal fan is a) inversely proportional to fan efficiency b) directly proportional to fan efficiency c) inversely proportional to static pressure d) inversely proportional to flow rate
6.	In a transformer on load, if the secondary voltage is one-fourth the primary voltage, then the secondary current will be a) four times the primary current b) sixteen times the primary current c) one-fourth the primary current d) two times the primary current
7.	In BEE Star labelled distribution transformers, which of following losses are defined? a) total loss at 50% and 100% loading b) total loss at 75 % loading c) total loss at 75% and 100% loading d) total loss at 100% loading
8.	Friction losses in a pumping system is a) inversely proportional to flow c) proportional to square of flow d) inversely proportional to cube of flow d) inversely proportional square of flow
9.	If V_1 is actual supply voltage and V_2 is the rated voltage of a capacitor, the reactive kVAr produced would be in the ratio of a) V_2^2/V_1^2 b) V_1^2/V_2^2 c) $1 - V_2^2/V_1^2$ d) $1 + V_2^2/V_1^2$

	The blow down loss in a cooling	tower depends on	
10.	a) TDS in circulating water c) evaporation loss	b) TDS in make-u d) all the above	
	Energy Star Label Rating scheme	for Fluorescent lamp is b	ased on:
11.	a) Lumens per Watt at 100, 2 b) End of Lamp Life in terms of b c) Lumen depreciation at 2000 h d) Color Rendering Index	ourring hours	fuse
	Identify the wrong statement fro system	m the following regarding	Vapor Compression Refrigeration
12.	a) condenser rejects heat to atm b) evaporator removes heat from c) compressor sends superheated d) high pressure sub-cooled	n process or space d vapor to condenser <mark>liquid refrigerant retur</mark> i	ns back to evaporator
40	The efficiency of a pump does no	ot depend on	
13.	a) suction head c) motor efficiency	b) discharge head d) density of liq	uid
	Which of the following is a positive	ve displacement compress	or?
14.	a) Screw compressor c) Centrifugal compressor	b) Reciprocating compres d) Both a & b	ssor
15.	The most energy intensive dryer a) refrigeration c) desiccant (heatless purge)	b) desiccant (he	eat of compression) ower reactivated)
16.	The ratings of the PF correction of 3000 rpm synchronous speed will induction motor at 1500 rpm syn	I be in com	als for a 37 kW induction motor at apparison to the same sized
	a) more b) less c) sa	me d) dependent on t	the connected load
17.	In a vapor compression refrigeremains constant a) compressor b) condenser	97-Y 1970 95	oonent across which the enthalpy d) evaporator
18.	A pump discharge has to be rec What should be the percentage r	duced from 120 m ³ /hr to 1 eduction in impeller size?	100 m ³ /hr by trimming the impeller.
	a) 83.3% b) 16.7%	c) 50.0%	d) 33.3%
19.	In an engine room 15 m long, changes/hr ism³/hr a) 30 b) 3000		, ventilation requirement for 20 air d) none of the above
20.	Which of the following type of lan a) halogen lamps b) LED la		lor critical applications ? pressure sodium vapour lamp
21.	with large dynamic head?	elationship between disch on the pump speed curve is parabolic	eteristic curve in a pumping system arge and head loss in a system of

22.	The inexpensive way to improve energy efficiency of a motor which operates consistently at below 40% of rated capacity is by a) Operating in Star mode
23.	Installing larger diameter pipe in pumping system results in reduction ina) static head b) frictional head c) both a and b d) neither a nor b
24.	If the delivery valve of the pump is throttled such that it delivers 30% of the rated flow, one of the best options for improved energy efficiency would be a) Trimming of the impeller b) Replacing the motor c) Replacing with a smaller pump d) operating with VFD
	A cooling tower is said to be performing well when:
25.	a) approach is closer to zero b) range is closer to zero
	c) approach is larger than design d) range is larger than design
	Capacitors with automatic power factor controller when installed in a plant:
26.	a) reduces active power drawn from grid b) reduces the voltage of the plant c) reduces the reactive power drawn from grid d) increases the load current of the plant
27.	For an air compressor with displacement of 100 CFM and system leakage of 10%, free air delivery is a) 111.11 CFM b) 90 CFM c) 100 CFM d) None of the above
28.	If 30,000 kcal of heat is removed from a room every hour then the refrigeration tonnage will be nearly equal to a) 30 TR b) 15 TR c) 10 TR d) 100 TR
29.	A 500 cfm reciprocating compressor has a loading and unloading period of 5 seconds and 20 seconds respectively during a compressed air leakage test. The air leakage in the compressed air system would be a) 125 cfm b) 100 cfm c) 200 cfm d) none of the above
30.	The Solar Heat Gain Coefficient (SHGC) of window of a building is 0.30. This means that a) The window reflects back to exterior a minimum of 30 % of the sun's heat
31.	The illuminance is 20 lm/m² from a lamp at 1 meter distance. The illuminance at half the distance will be a) 401 lm/m² b) 10 lm/m² c) 20 lm/m² d) 80 lm/m²
32.	Use of soft starters for induction motors results in a) Lower mechanical stress b) Lower power factor c) Higher maximum demand d) All the above
33.	Energy performance index is calculated based on a) total building annual energy consumption /built up area b) total building annual energy consumption /carpet area c) total building annual energy consumption for HVAC and lighting /carpet area d) none of the above

	A 4 pole 50 Hz induction motor is running at 1470 rpm. What is the slip value?					
34.	a) 20% b) 2% c) 4% d) 40%					
35.	Which of the following power plants has the highest efficiency? a) Open cycle Gas Turbine b) Diesel Engine c) Combined cycle gas turbine d) Conventional coal plants					
36.	is used as refrigerant both in vapour compression and vapour absorption systems a) Lithium Bromide b) Water c) HFC 134A d) Ammonia					
37.	Which of the following parameters is not required for evaluating volumetric efficiency of reciprocating air compressor? a) Power input b) FAD c) Cylinder Stroke d) Cylinder bore					
38.	The gross efficiency of a coal based power generating unit with a gross heat rate of 2600 kcal / kWh is a) 41.4% b) 38.7% c) 33.1% d) 30.8%					
39.	The COP of a vapour compression refrigeration system is 3.3. If the motor draws power of 10 kW at an operating efficiency of 90%, the tonnage of refrigeration system is about: a) 0.8 b) 8.5 c) 7.2 d) 9.6					
40.	Increasing the suction pipe diameter in a pumping system will a) Decrease NPSHA					
41.	For a Cooling Tower, if evaporation loss is 15 m ³ / hour and Cycles of Concentration is 2.5, the blowdown is equal to					
42.	In T-5 Fluorescent Lamp, "5" is indicative of: a) 5 watt power rating b) 5% Energy Saving with respect to T8 c) 5 th generation lamp d) Tube diameter					
43.	Which of the following is not likely to create harmonics in an electrical system? a) soft starters b) variable frequency drives c) uninterrupted power supply source (UPS) d) electric heater					
44.	The performance of rewinding of an induction motor can be assessed by which of the following factors?					

45.	In a DG set, a 3-phase alternator is supplying on an average 100 A at 420 V and 0.9 pf to a load. If the specific fuel consumption of this DG set is 0.30 lts/ kWh at that load, then how much fuel is consumed while delivering generated power for one hour? a) 11.34 litre b) 19.64 litre c) 21.82 litre d) 1964.088 litre			
46.	The total loss for a transformer loading at 60% with no load and full load losses of 3 kW and 25 kW respectively, is a) 3 kW b) 12 kW c) 18 kW d) 25 kW			
47.	A process fluid at 40 m³/hr, with a density of 0.95, is flowing in a heat exchanger and is to be cooled from 35 °C to 29 °C. The fluid specific heat is 0.78 kCal/kg. If the chilled water range across the heat exchanger is 4 °C, the chilled water flow rate is a) 44.46 m³/hr b) 40.41 m³/hr c) 35.37 m³/hr d) none of the above			
48.	In which of the following fans the air does not change flow direction from suction to discharge? a) tube axial fan b) vane axial fan c) propeller fan d) all the above			
49.	What is window to wall ratio a) Vertical fenestration area / gross exterior wall area			
50.	The maximum thermal efficiency of a diesel engine power plant is in the range of a) 43-45 % b) 53-55% c) 63-65 % d) 73-75%			

----- End of Section - I -----

Section - II: SHORT DESCRIPTIVE QUESTIONS

The input parameter measured for a 15 kW, 3 phase, 415 V induction motor is 25 A and 12 kW at 410 V. Calculate the following a) Apparent Power drawn by the motor at the operating load (1 Mark) b) Reactive Power drawn by the motor at the operating load (3 Marks) c) Operating power factor (1 Mark) Ans Apparent power = 1.732 x 0.410 x 25 = 17.75 KVA Reactive power = sqrt (apparent power² - active power²) Active power = 12 kW Reactive power = sqrt $(17.75^2 - 12^2)$ = sqrt (171.06) = 13.07 kVAr Operating power factor = Active power/Apparent power

Marks: $8 \times 5 = 40$

= 12/17.75 = 0.676

= 0.6

S-2 The total system resistance of a water supply piping system is 30 meters and the static head is 10 meters at designed water flow. Calculate the system resistance offered at 75%, 50% and 25% of water flow.

Ans Total System Resistance of piping system: 30m

Static Head: 10 m (Static head will remain same irrespective of the flow)

So, Dynamic Head at designed water flow: (30-10) = 20m

No.	Flow %	Static Head (m)	Dynamic Head (m) = 20 x (%flow) ²	Total System Resistance (m)
1	75%	10	11.25	21.25
2	50%	10	5.0	15.0
3	25%	10	1.25	11.25

S-3 An energy audit study of a central chiller system in a commercial building was conducted and measured parameters are given below.

Chilled water inlet temperature :12 °C Chilled water Outlet temperature :7 °C

Chilled water pump discharge pressure : $3.6 \text{ kg/cm}^2\text{g}$ Pump suction is 5 meters above the pump center line Power drawn by the chilled water pump motor:70 kW

Efficiency of pump motor: 93 %

Pump efficiency: 60 %

Find out the operating load of the Chiller system in TR.

Ans Total head 36-5=31 m

Pump shaft power $70 \times 0.93 = 65.1 \text{ kW}$

Flow rate = $(65.1 \times 1000) \times 0.6 / 31 \times 1000 \times 9.81 = 0.128 \text{ m}^3/\text{s}$ or $460.8 \text{ m}^3/\text{hr}$

Refrigeration load $(460800 \times 5) / 3024 = 761.9 \text{ TR}$

A plant has installed a refrigerant dryer for supplying dry air for their process applications and dryer coil is maintained at 5 °C & 100% RH. The average air flow through the dryer is 100 kg/min. The air properties are given below
 3 Marks

Parameter	Enthalpy (kJ/kg of dry air)	Absolute Humidity (grams/kg of dry air)
Inlet air 35 °C & 50% RH	81	18
Dryer coil 5 °C & 100% RH	19	5.5

Calculate the following:

- i) Moisture removed per hour.
- ii) Cooling capacity of coil in TR.
- b) List down any three energy saving measures in compressed air systems.

2 Marks

Ans a

i) Moisture removed = $100 \times (18 - 5.5)$

= 1250 grams/min = 1.25 kg/min = 75 kg/hr

ii) $TR = 100 \times (81 - 19)$

= 6200 kJ/min = 6200/(4.186) = 1481.13 kcals/min

= 1481.13*60/3024

= 29.39 TR

b) Energy saving measures for compressed air system

Refer guidebook-3, page no 80-99

A DISCOM has taken initiatives to reduce Aggregate Technical & Commercial (AT & C) losses in their network. The energy supplied, received and revenue details are given below: Input energy : 50 MU Billed Energy (Metered) : 39 MU Billed Energy (Un-metered) : 2 MU Amount Billed : Rs. 470 Million Arrears collected : Rs. 30 Million Gross Amount collected : Rs. 390 Million a) Estimate the AT & C losses (in %) 3 Marks b) List any four strategies to reduce the commercial losses. 2 Marks Ans a) Billing efficiency % = (Total Units billed, MU/ Total Input, MU) x 100 $= [(39 + 2) / 50] \times 100 = 82\%$ Collection efficiency, % = (Gross amount collected-Arrears, Rs. / Amount billed, Rs.) x 100 $= [(390 - 30) / 470)] \times 100 = 76.6\%$ AT & C Loss = [1 - (Billing efficiency x Collection Efficiency)] x 100 $= [1 - (0.82 \times 0.766)] \times 100 = 37.19\%$ b) Strategies to reduce commercial losses. Refer guidebook-3, page no 27 The size of an air-conditioned office is 12 m X 7 m. Desired illuminance level is 200 Lux. An architect has suggested to install 24 no's of 20 W LED lights at a height of 3 m from ground level. The working plane is 0.75 m above the floor. The other details of 20W LED lamps are: Output of LED Lamp : 2000 lumens Utilization factor : 0.65 Light Loss Factor (LLF) : 0.75 Calculate Room Index & number of LED lights required to get the desired illuminance. As an energy manager do you agree with the architect decision-why? Ans: Mounting Height, $H_m = 3 - 0.75 = 2.25 \text{ m}$ Room Index (RI) = $[L \times W] / [H_m \times (L + W)]$ $= [12 \times 7] / [2.25 \times (12 + 7)] = 1.97$ Number of LED lights = -----F x UF x LLF 200 x (12 x 7) 2000 x 0.65 x 0.75 So total number of 20 W LED lights required is 18 nos No, I don't agree with architect decision as number of LED light required is only 18 against suggested of 24 nos which is an energy inefficient design. S-7 A centrifugal fan drawing 54 kW and operating at 1440 RPM is delivering air at 30000 m³/hr. The head developed by the fan is 400mmWC, If the speed is decreased by 200 rpm, calculate the following Air Flow in m3/hr (1 mark) a) b) Static Pressure in mmWC (2 marks)

	8				
	c) Power drawn in kW	(2 marks)			
Ans	1. Air flow in m³/hr	= (1240/1440) *30000			
	~~	= 25833.33 m ³ /hr			
	2. Static Pressure in mmWC	=(1240/1440)2 *400			
		= 296.61 mmWC			
	3. Power drawn in kW	=(1240/1440)3 *54			
		=34.48 kW			
S-8	State True or False. (1 Mark each)				
Ans	1. An industrial electrical system is operating at unity power factor. Addition of further				
	capacitors will reduce the maximum				
	2. In a step-down transformer for a given load the current in the primary will be more				
	than the current in the secondary False				
	3. For the same no of poles and kW rating, the RPM of an energy efficient motor is higher				
	than that of a standard motor. – True				
		poling is that it is possible to obtain water			
	temperatures below the wet bulb eco	onomically. – <mark>False</mark>			
	A fluid coupling changes the speed speed of the motor. – True	d of the driven equipment without changing the			

----- End of Section - II -----

Section - III: LONG DESCRIPTIVE QUESTIONS Write short notes on the following:

Se	etion – III: LONG DESCRIPTIVE QUESTIONS	Marks: 6 x 10 = 60
L-1	 Write short notes on the following: a) Energy Performance Index (EPI) b) List any two Energy Efficiency measures in Building air conditioning c) Building Envelop from an energy efficiency point of view. d) Difference between building area method and space function method Power density (LPD) e) Solar Heat Gain Coefficient (SHGC) 	
Ans	a) Refer Guide Book No 3, Chapter 10, Page No 287 b) Refer Guide Book No 3, Chapter 10, Page No 288 c) Refer Guide Book No 3, Chapter 10, Page No 270 d) Refer Guide Book No 3, Chapter 10, Page No 281 e) Refer Guide Book No 3, Chapter 10, Page No 272 In a steel industry, cooling water of 7500 m³/hr and 4200 m³/hr from t temperatures of 38 °C and 55 °C respectively, are fed to cooling tower measured heat rejection by the cooling tower is 38,000 TR, calcul	after proper mixing. If the
Ans:	measured heat rejection by the cooling tower is 38,000 TR, calculate the effectiveness are evaporation loss of the cooling tower at 28 °C WBT.	

L-3	Fill in the blanks for the following
	The main input energy used for refrigeration in vapor absorption refrigeration plants is
	2. One ton of refrigeration is equivalent tokW
	3. Stray losses in an induction motor generally are proportional to the square of thecurrent
	4. The unit of AAhEPI is
	5. If the pump impeller diameter is reduced by 10% then head reduces by%
	6. A 4 pole,50Hz motor operating with slip of 3% will have a shaft speed ofRPM
	7. Effective Aperture Glazing (EA) = VLT x
	8. In an amorphous core distribution transformer, no-load loss is than a conventional transformer
	9. As the condensing temperature increases, kW/TR of refrigeration system will
	10. The extent of drying compressed air is expressed by the term
Ans	 Thermal energy (or steam or waste heat or gas or any energy related to thermal energy) 3.51 Load current Wh/sqm/hr 19% 1455 Window to wall ratio Less Increase Atmospheric Dew point /Dew Point
L-4	The data for centrifugal chiller and vapour absorption chiller are given below
	Parameter Centrifugal chiller VAM
	3

Parameter	Centrifugal chiller	VAM
Chilled water flow (m³/h)	189	180
Condenser water flow (m³/h)	238	340
Chiller inlet temp (°C)	13.0	14.6
Condenser water inlet temp (°C)	27.1	33.5
Chiller outlet temp (°C)	7.7	9.0
Condenser water outlet temp (°C)	35.7	39.1
Power drawn by compressor (kW)	190	-
Steam consumption (kg/h)	1211	1570
Chilled water pump (kW)	28	28
Condenser water pump (kW)	22	33
Cooling tower fan (kW)	6.0	15
Cost of Steam (Rs/kg)	(=)	2.0
Cost of electricity (Rs/kWh)	9.0	9.0

- a) Evaluate the tonnes of refrigeration (TR) of both the systems? (4 Marks)
- b) Operating Energy cost per hour for both the systems? (6 Marks)

Ans

a) Refrigeration load (TR) = Chilled water flow (m^3/hr .) x Spec. heat x Diff. in temp. / 3024 Centrifugal chiller TR = $189 \times 1000 \times 1 \times (13-7.7) / 3024 = 331.25 \text{ TR}$

VAM TR = $180 \times 1000 \times 1 \times (14.6-9.0) / 3024 = 333.33 \text{ TR}$

b) Auxiliary power consumption: Chilled water pump + condenser water pump + cooling tower fan

Auxiliary power (kW) : 28 + 22 + 6.0 = 56 kW

VAM auxiliary power (kW): 28 + 33 + 15 = 76 kW

Energy cost of centrifugal chiller =(56+190)*9= Rs 2214/hr

Energy cost of VAM system = (76*9)+(1570*2)

= Rs 3824 / hr

L-5 A review of electricity bills of a process plant was conducted as a part of energy audit. The plant has a contract demand of 3000 kVA with the power supply company. The average maximum demand of the plant is 2000 kVA/month at a power factor of 0.95. The maximum demand is billed at the rate of Rs.350/kVA/month. The minimum billable maximum demand is 80% of the contract demand.

An incentive of 0.5 % reduction in energy charges component of electricity bill are provided for every 0.01 increase in power factor over and above 0.95. The average energy charge component of the electricity bill per month for the plant is Rs.80 lakhs.

Calculate the following

- a) If the plant decides to improve the power factor to unity, determine the power factor capacitor kVAr required and the annual monetary benefits.
 6 Marks
- b) What will be the simple payback period if the cost of power factor capacitors is Rs.1200/kVAr.

4 Marks

S

kW drawn	2000 x 0.95 = 1900 kW
KVAr required to improve power factor from 0.95 to 1	= kW (tan θ_1 – tan θ_2)
	= kW (tan (cos-1φ ₁) – tan (cos-1φ ₂)
	= 1900 (tan (cos-10.95) - tan (cos-11)
	= 1900(0.329 - 0)
Power Factor Capacitor KVAr required	= 625 kVAr
Cost of P.F. capacitors @Rs.1200/kVAr	= 625 KVAr x 1200 Rs. / kVAr
	= Rs.7,50,000/-
Maximum Demand at unity power factor	= 1900/1 = 1900 kVA
80% of contract demand (3000 kVA)	= 3000x 0.8 =2400kVA
Reduction in Maximum Demand charges	(NIL) Though demand is reduced to 1900 KVA as per minimum billing requirement plant has to pay for 2400 KVA.
Percentage reduction in energy charge from 0.95 to 1 @ 0.5 % for every 0.01 increase	= ((1-0.95)/0.01) x (0.5%) = 5 x 0.5% = 2.5 %
Monthly energy cost component of the bill	= Rs.80,00,000
Reduction in energy cost component	= 80,00,000 x (2.5/100)
	= Rs.2,00,000/month
Annual reduction in energy cost	= Rs.2,00,000 x 12
component owing to P.F. improvement	= 24,00,000/- per year
Annual Savings in electricity bill	= Rs.0+ 24,00,000= Rs. 24,00,000/-
Investment	= Rs.7,50,000/-

Payback period	= (Investment / Annual Savings) X 12 = (Rs.7,50,000/ 24,00,000) X 12
	= 3.75 months

L-6

a) During the performance evaluation of a DG set, the following parameters were noted

Capacity of DG set	750	kVA
Test duration	36	minutes
Units generated	250	kWh
Average Power factor	0.92	pf
Length of diesel tank	100	cm
Width of diesel tank	100	cm
Height of the diesel tank	90	cm
Initial tank dip level (from top)	63	cm
Final tank dip level (from top)	53	cm

Calculate the following:

1.Diesel consumption (Litres) (1 Mark)
2.Average load (kW) (1 Mark)
3.Percentage Loading (%) (2 Marks)
4.Specific power generation (kWh/Litre) (1 Mark)

b) A medium sized engineering industry has installed two 480 CFM screw compressors, A & B. Compressor-A is operating at full load and Compressor-B is running in load - unload condition. The load power of both the compressor is 74 kW and the unload power of the Compressor-B is 26 kW. Both the compressors are operated during working day.

The percentage loading of the Compressor-B during working day is 70 %. After arresting the leakage in the system the loading of the compressor was found to be 35 %. Estimate the energy savings per day.

5 Marks

a)

1. Diesel Consumption = (1x1x 0.1)x 1000 =100 Liters
2. Average load (kW) = (250/36)x60 =416.67 kW
3. Percentage Loading (%) = (416.6/.92)/750 =60.4 %
4. Specific power generation (kWh/Litre) = (250/100) =2.5 kWh/Litre

b)

Existing Case:

Energy consumed per hour by Compressor -A= 74 kWh

Energy consumed per hour by Compressor -B= 0.70 x 74 + 0.30 X 26 = 59.6 kwh

Total energy consumed (Compressor A& B) = 74 + 59.6 = 133.6 kWh/hr

Energy consumed per day= 133.6 X 24 hrs = 3206.4 kWh/day

Leakage Calculation

Energy consumed per hour by Compressor -B= $0.70 \times 74 + 0.30 \times 26 = 59.6$ kwh Energy consumed per hour by Compressor -B= $0.35 \times 74 + 0.65 \times 26 = 42.8$ kWh Difference in power consumption = 59.6 - 42.8 = 16.8 kWh/hr Savings by arresting leakage per day= $16.8 \times 24 = 403.2$ kWh/day

----- End of Section - III -----

Marks : $50 \times 1 = 50$

21st NATIONAL CERTIFICATION EXAMINATION FOR

ENERGY MANAGERS & ENERGY AUDITORS

PAPER - 3: ENERGY EFFICIENCY IN ELECTRICAL UTILITIES

Date: 28.03.2021 Timings: 09:30-12:30 HRS Duration: 3 HRS Max. Marks: 150

General instructions:

- o Please check that this question paper contains 8 printed pages
- o Please check that this question paper contains 64 questions
- o The question paper is divided into three sections
- o All questions in all three sections are compulsory
- o All parts of a question should be answered at one place

Section - I: OBJECTIVE TYPE

1.	Which of following is not used for speed control?		
	a) fluid coupling	b) eddy current	C
	c) soft starter	d) variable frequency drive	
2.	Which of the following compressed air dryer requi	res the use of activated alumina?	
	a) membrane dryer	b) heat of compression	В
	D1 450255 500	<u>dryer</u>	-
	c) refrigerant dryers	d) all of the above	
3.	During a leak test of a compressed air system,		
	was 1.5 minute, average unload time was 10	0.5 minutes and flow rate was 35	
	m³/min.		Α
	The leakage quantity is		
	a) 4.375	b) 5.125	
	c) 7.625	d) 6.250	
4.	Which of the following is not an adsorption ty	ype of air drier for compressed air	
	system?	•••	D
	a) blower reactivated type	b) heat less purge type	
	c) heat of compression type	d) refrigerant type	
5.	At which of the following dew points of the co	impressed air, the moisture content	
	would be maximum?	1) 500	В
	a) -10°C	b) -5°C	
_	c) -40°C	d) -20°C	
6.	Which of the following uses concept of evaporative		
	a) cooling towerc) window air conditioner	b) domestic refrigerator	A
	c) window air conditioner	d) deep freezer	
7.	Specific Ratio is maximum for		
	a) backward curved fan	b) forward curved fan	D
	c) blowers	d) Compressors	
8.	Which of the following can be used to regulate the	e flow of fans?	
	a) pulley change	b) damper control	D
	c) inlet guide vane regulation	d) all of the above	56

9.	What will be the blowdown loss of a cooling tower if evaporation loss is 15.32 m ³ /hr	
	and COC is 2.7?	A
	a) $9.01 \text{ m}^3/\text{hr}$ b) $5.67 \text{ m}^3/\text{hr}$	A
	c) 41.3 m ³ /hr d) 0.17 m ³ /hr	
10.	ECBC code is applicable to commercial buildings having connected load	
	of	A,B,
	a) 100 kW b) 500 kW	C,D
	c) 250 kW d) 1000 kW	
11.	Which of the following pump is not a positive displacement pump	
	a) piston pump b) rotary vane	D
	c) diaphragm pump <u>d) centrifugal pump</u>	
12.	The power factor of an electrical system having an active power of 100 kW and	
	reactive power of 80 kVAr will be	c
	a) 0.81 b) 0.88	
	c) 0.78 d) cannot be determined	
13.	A 22 kW motor rated for 415 V, 42 A and 0.8 power factor will have an efficiency	
	of	A
	<u>a) 91 %</u> b) 92 %	
	c) 89.9 % d) none of the above	
14.	If the power consumed by an air conditioner compressor is 1.7 kW per ton of	
	refrigeration, then its energy efficiency ratio (Watt/Watt) is	В
	a) 1.7 b) 2.06	
	c) 0.59 d) none of the above	
15.	Which of the following devices do not produce any harmonics?	
	a) UPS <u>b) incandescent bulb</u>	В
	c) arc furnace d) electronic ballast	
16.	A DG set is consuming 70 litres per hour diesel oil. If the specific fuel consumption is	
	0.33 litres/kWh, what is the kVA loading at 0.8 power factor?	В
	a) 212 kVA b) 265 kVA	ь
	c) 170 kVA d) none of the above	
17.	Flow control by damper operation in fan system will	
	a) increase energy consumption b) reduce energy	В
	consumption	
	c) reduce system resistance d) none of the above	
18.	Which one of the following has the maximum CRI?	
	a) Incandescent lamp b) LED lamp	A
	c) CFL lamp d) HPSV lamp	
19.	In a pumping system, if the temperature of the liquid handled decreases, then	
	a) NPSHa increases b) NPSHa decreases	A
	c) NPSHa remains constant d) NPSHa and NPSHr are	100.00
	independent of temperature	
20.	If the COP of a vapour compression system is 3.5 and the motor draws a power of	
	10.7 kW at 80% motor efficiency, the cooling effect of vapour compression system will	
	be	A
	a) 30 kW b) 42 kW	000000
	c) 27 kW d) 2.99 kW	

21.	One of the thermal power plants operating with 2 numbers of 500 MW units has reported the operating heat rate of 11250 kJ/kWh. The Plant Load Factor (PLF) of the power plant is 73 %. The operating efficiency of the power plant will be a) 38 % b) 35 % c) 30 % Aggregate Technical & Commercial leaves in distribution gustern aggregate.		
22.	Aggregate Technical & Commercial losses in distribution system covers		
	distribution loss	D	
	c) only transmission losses d) energy and monetary loss		
23.	The two-part tariff structure for HT category consumers are		
	 a) one part for capacity drawn and second part for actual energy drawn 		
	b) one part for actual power factor and second part for actual energy drawn	Α	
	c) one part for capacity drawn and second part for actual reactive energy drawn	••	
	d) one part for actual apparent energy drawn and second part for actual		
	reactive energy drawn		
24.	The illuminance is 10 lm/m ² from a lamp at 1 meter distance. What will be the		
	illuminance (in lm/m²) at 2-meter distance from lamp?	В	
	a) 2.75 b) 2.5		
	c) 40 d) 20		
25.	A spark ignition engine is used for firing which type of fuels		
	a) gasoline b) land fill gas	D	
	c) natural gas <u>d) all of the above</u>		
26.	In a water Lithium bromide refrigeration system, the concentration of the lithium		
	bromide gets diluted in	D	
	a) evaporator b) condenser		
72 27 100 000	c) generator <u>d) absorber</u>		
27.	Increasing the cycles of concentration of circulating water in a cooling tower will		
	a) increase blow down quantity b) decrease blow down	В	
	c) increase drift losses d) decrease fan power		
	consumption		
28.	Which of the following is not true for energy efficient motors?		
	a) starting torque is higher than standard motors		
	b) starting torque is lower than standard motors	A	
	c) slip is lower than standard motors		
	d) speed is higher than standard motors		
29.	The performance of rewinding of an induction motor can be assessed by which of the		
	following factors?		
	a) no load current b) stator resistance per phase	D	
	c) load current d) both no load current and		
	stator resistance per phase		
30.	The theoretical synchronous speed of 4 pole motor operating at 50 Hz will be		
	a) 1500 rpm b) 3000 rpm	A	
	c) 200 rpm d) none of the above		

31.	If water is flowing through a cooling tower at			
	cooling tower at ambient wet bulb temperature	e of 33 °C is	S	A
	a) 198.4 TR		357 TR	
	c) 158 TR	535. F .2	none of the above	
32.	When the evaporation of water from a wet subs	stance at a	tmospheric condition is zero,	
	it indicates			
	a) RH is 0%		RH is 100%	В
	c) wet bulb temperature is greater	d)	none of the above	
	than dry bulb temperature			
33.	A hotel building has four floors each of 1000			
	allowance for the hotel building is 43,000 W. T			A
	<u>a) 10.75</u>	b)		100,000
	c) 43	d)	data insufficient	
34.	As per Energy Conservation Building Code, co	10 Table		
	that Window Wall Ratio (WWR) is 0.40 and Vis	able Light T	Fransmittance (VLT) is 0.25	A
	a) 0.1	b)	1.6	
	c) 0.65	d)	0.625	
35.	The Solar Heat Gain Co-efficient (SHGC) of a w	indow of a	building is 0.30. This means	
	that			
	a) The window allows 70% of the sun's h	neat to pass	s through into interior of the	
	building			
	b) The window allows 30% of the su	ın's heat	to pass through into the	В
	building interior		•	
	c) 70% of the sun's heat is incident on the	aa rriindarri		
	d) The window reflects back to exterior a		of 30 % of the sun's heat	
36.	The purpose of after-cooler in a multistage com			
30.	a) remove the moisture in the air	-76	reduce the work of	
	aj Temove the moisture in the an	D)	compression	A
	c) separate moisture and oil vapour	d)	none of the above	
37.	The outer tube connection of the Pitot tube			
07.	system	is asca to	measurenr the lan	
	a) static pressure	b)	total pressure	A
	c) velocity pressure	ы	d) none of the above	
38.	Which of the following contributes to increased	technical		
55.	a) lower sized conductors	b)	low power factor	D
	c) lengthy distribution lines	d)	all of the above	D
		55-25-		
39.	Which one has the maximum effect on cooling	- C. P. C.		
	a) fill media	b)		A
	c) louvers	d)	casing	
40.	Single stage Li-Br water absorption refrigeration	n systems	have a COP in the range of	
	a) 0.40 - 0.5	b)	0.65 - 0.70	В
	c) 0.75 - 0.8	d)	0.2 - 0.3	=
41.	ers. CV Milled to Sand Bed C)O 1/W Th-	motor officiency is 0.0 and	
41.	Shaft power of the motor driving a pump is 2		_	
	pump efficiency is 0.55 at that operating load.	The power	u ansimilied to the water is	1000
				C
	a) 12.2 kW c) 11 kW	b) d)	9.9 kW 12.7 kW	C

	d) lower evaporator temperature and			
	b) higher evaporator temperature and lower condenser temperature c) higher evaporator temperature and higher condenser temperature			
		d lower condenser temperature	A	
50.	COP of an air-conditioner will be least with			
1111000000	c) <u>6.75 kW</u>	d) none of the above		
	a) 12 kW	b) 9 kW	С	
	power drawn by the fan would be			
49.		the speed is reduced to 600 RPM then the		
	c) 1.724	d) none of the above		
	a) 4.84	b) 1.38		
	would be:	person in an arann by the compressor	A	
48.	I was the control of	ity delivers a cooling effect of 4 TR. If the he power in kW drawn by the compressor		
10	The second secon	*		
	a) sodium vapour lampsc) tube Lights	b) LED lamps d) incandescent lamps	D	
47.	Power factor is highest in case of	b) LED lasses	<u> 12</u> 01	
ما مشقر باین و	c) 810 kW	d) none of the above		
	a) 900 kW	b) 1000 kW	В	
46.	The input of a 900 kW rated motor operati	ng with 90% efficiency is		
6300 Max	c) reciprocating compresssor	d) all of the above		
	a) screw compresssor	b) centrifugal compresssor	В	
100034656	capacity control?		_	
45.	Which of the following compressors do	not use loading / un-loading method for		
	c) screw chillers	d) large reciprocating chillers	**	
	a) domestic refrigerator	b) centrifugal chillers	A	
44.	c) 167 mm Hermetic system is used in	d) 145 mm		
	a) 60 mm	b) 240 mm d) 145 mm		
	impeller size?		C	
	reduced to 100 m ³ /hr by trimming the	impeller, what should be the approximate		
43.	A pump with 200 mm impeller is deliveri	ng a flow of 120 m ³ /hr. If the flow is to be		
	c) $(Wh/m^2)/hr$	d) m ² /Wh/yr		
	a) kWh/m²/yr	b) m ² x kWh/hr	c	
42.	The unit of AAhEPI is given by			

D	of Section		
 rana	or section	-	

Marks: $8 \times 5 = 40$

Section - II: SHORT DESCRIPTIVE QUESTIONS

- (i) Answer all **<u>Eight</u>** questions
- (ii) Each question carries **Five** marks

G 1	Fill in the blanks: 1 Mark each
S-1	a) Heat rate of a thermal power plant is expressed in
	b) The loss is independent of load in a transformer.
	c) is used to reduce the dew point in a compressed air system
	d) The difference between the total and static pressure in an air duct is
	e) The speed of an energy efficient motor will be more than the standard motor of
	same capacity because decreases.
S-1	a) kCal/kWh or kJ/kWh
Sol	b) Core loss or iron loss or no-load loss
	c) Air dryer
	d) Velocity Pressure or Dynamic Pressure
v.	e) Slip
S-2	List five Energy Efficiency measures in buildings 5 Marks
S-2	Refer Guidebook 3 (Pg 288-290)
Sol	a) Name air peremeters along with write that a payabrametric short provides to an air
S-3	a) Name six parameters along with units that a psychrometric chart provides to an air conditioning engineer. 3 Marks
	b) Explain briefly about Thermal Emittance 2 Marks
÷	
S-3	a) Following air parameters are being provided by psychometric chart.
Sol	1. Dry bulb temperature (°C)
	2. Relative humidity (%)
	3. Wet bulb temperature (°C)
	4. Specific volume (m3/kg of dry air)
	5. Enthalpy (kcal/kg of dry air)
	6. Specific humidity or Humidity factor (grams/kg of dry air)
	b) Refer Guidebook-3, page no 272
S-4	A process plant has installed 5 MW DG set for base load operation, which is operating
5-4	at 70% loading. Furnace oil is used as a fuel in the DG set. The DG set generates 8.6 kg
	of exhaust gas per kWh generation.
	The plant management has decided to install a heat recovery boiler to generate steam at
	3 kg/cm ² (g) from the exhaust gas to reduce the exit flue gas temperature from 450°C to
	200°C. The specific heat of flue gas is 0.26 kcal/kg°C. The steam generated from waste
	heat boiler will be used in double effect Li - Br Vapor Absorption Chiller, with a COP of
	1.12. How much TR will be generated through VAM?
	5 Marks

S-4	Loading of DG Set = 70% x 5 MW = 3.5 MW = 3500 kW
Sol	Overtity of heat available from aubayat sa
202	Quantity of heat available from exhaust gas = 3500 kW x 8.6 kg gas generated/kWh x 0.26 kcal/kg°C x (450 °C - 200°C)
	=19,56,500 kcal/hr
	Potential TR generation through double effect VAM
	COP = (TR/ Heat input)
	TR= (COP X Heat input) / 3024
	= (1.12*1956500) / 3024
	= 724.6 TR
S-5	What are the advantages of using vapour absorption refrigeration system over vapour
5-5	compression system? Under what condition it would be economical? 5 Marks
S-5	Refer Guidebook 3 (Pg 112-116)
Sol	
S-6	A process plant is situated 100 m above the ground level on the top of the hill. The plant
	requires 100 kL of water per hour. The management decides to install a pump at the
	ground level, with suction 3 meter below the ground level. The friction head is 12 meter.
	Evaluate the rating of the motor required considering 10% extra margin with respect to
	actual input pump power. The design pump efficiency is 65%. Also calculate the motor
	input power if the motor efficiency is 93%.
¢	5 Marks
S-6	Ans
Sol	Q= 100/3600 =1/36 m3/s = 0.0277 m3/s P = 1000 kg/m3
	Static Head = 100- (-3) = 103 m
	Total Head = Static Head + Friction Head
	= 103 + 12
	= 115
	Hydraulic power required = Q*p*(hd-hs)*g/1000
	= (0.0277* 1000 *115*9.81)/1000
	= 31.25 KW
	Pump efficiency = 65%
	Pump input power (shaft power) required= 31.25/0.65= 48.07 KW
	Motor rating (shaft power) = 48.07kW
	Motor rating (shaft power) with 10% margin above pump input power
	= 48.07+ (0.1*48.07) =52.87 KW
	Matanianast managa = danian natad managa / matan efficiences
	Motor input power = design rated power / motor efficiency = 48.07/0.93
	13.37 3.30
8:	= 51.69 kW
S-7	A small foundry has installed a reciprocating air compressor of 14.25 m³/min. The
	plant could not meet the compressed air requirement and hence conducted a capacity
	test to determine the derating in the compressor capacity. Calculate the actual FAD

delivered after considering the necessary temperature correction in m³/min and also the percentage derating. 5 Marks

The operating parameters are given below:

Volume of air receiver including pipe and cooler = 9 m^3 Atmospheric temperature (T1) = 35°C Receiver temperature (T2) = 44°C

Initial Pressure = $0.5 \text{ kg/cm}^2(g)$ Final Pressure = $7.0 \text{ kg/cm}^2(g)$ Atmospheric pressure = $1.026 \text{ kg/cm}^2(a)$

Time taken to build up the pressure = 5 minutes

S-7 Ans:-

Sol FAD delivered in m³/min:

FAD = $((P2-P1)/Pa)^*$ (Receiver & holding Volume in m^3/T ime in $min)^*$ (Temp Corr Factor)

 $P1 = 7.0 \text{ kg/cm}^2(g)$

 $P2 = 0.5 \text{ kg/cm}^2 \text{ (g)}$

 $Pa = 1.026 \text{ kg/cm}^2(a)$

Receiver & holding Volume in $m^3 = 9 m^3$

Time in min = 5 minutes

= $[(7.0-0.5) \times 9/(1.026 \times 5)] = 11.40 \text{ m}^3/\text{min}$

FAD after temperature correction

Temperature correction factor = (273+T1)/(273+T2)

T1 is suction Temperature and

T2 is receiver temperature.

= (273+T1)/(273+T2)

= (273+35)/(273+44)

= 0.972

FAD after temperature correction is = $11.40 \text{ m}^3/\text{min}*0.972$

 $= 11.08 \text{ m}^3/\text{min}$

Capacity shortfall = 14.25-11.08

	=	3.17 m³/min,	
	% Capacity de-rating =	(3.17/14.25) ×100	
	=	22.24%	
S-8	A V-belt driven centrifugal fan is static efficiency for the following op	term ag and	
	Ambient temperature		5 Marks
	Density of air at 40°C		1.127 kg/m³
	Diameter of the discharge a	ir duet	1.127 kg/m³
		by Pitot tube in discharge duct	47 mm WC
	Pitot tube coefficient	by 1 not tube in discharge duct	0.9
	Static pressure at fan inlet		-22 mm WC
	Andrew Shakes		188 mm WC
	Power drawn by the motor	Static pressure at fan outlet	
	Belt transmission efficiency Motor efficiency at the operating load To Calculate fan static efficiency:		72 kW 95%
			90%
S-8			3070
Sol	Air velocity	= Cp x $(2 \times 9.81 \times \triangle p / \gamma)^{-0.5}$	
		= 0.9 x (2 x 9.81 x 47 / 1.127) ^	0.5
		= 25.7 m/s	
	Area of the discharge duct	= [3.14 x 1 x 1]/4 = 0.785 m ²	
	Volume	= 25.7 x 0.785 = 20.17 m ³ /s	
	Power input to the fan shaft	= 72 x 0.95 x 0.9 = 61.6 kW	
	Fan static efficiency	= Volume in m³/ sec X total stati 102 x Power input to	1170):
		= <u>20.17 x [188 - (-22)]</u> 102 x 61.6	
		= 67.4%	

Section - III: LONG DESCRIPTIVE QUESTIONS

Marks: $6 \times 10 = 60$

- (i) Answer all **Six** questions
- (ii) Each question carries **Ten** marks

L-1	a) List five losses in electrical motors and discuss about the measures taken by the				
12-1	motor manufacturers to reduce the losses in energy efficient motor.				
	5 Marks				
	b) List five energy conservation opportunities in pumping system.				
	5) List live energy conservation opportunities in pumping system. 5 Marks				
L-1	a. Refer Guidebook-3, Page 51				
Sol	b. Refer Guidebook-3, Page 193				
L-2					
15-2	a) List any three energy efficient lighting controls. Describe briefly about daylight linked control 5 Marks				
	\$2000 Area (\$200 pt \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4				
	b) Explain briefly about various water losses in cooling towers and how they can be minimized? 5 Marks				
L-2	99/00/00/00/00/00/00/00/00				
Sol	a. Refer Guidebook-3, Page 243-244				
L-3	b. Refer Guidebook-3, Page 205				
13	Rated capacity of bottom ash disposal pump flow rate is 485 m ³ /hr and discharge				
	pressure is 13.5 kg/cm ² at rated speed of 2950 rpm. It has been observed that 450				
	m ³ /hr water is sufficient to dispose the ash. The suction pressure of the pump is 0.5				
	kg/cm ² . The management has decided to trim the impeller to satisfy the reduced flow				
	requirement.				
	Calculate:				
	a) % reduction of impeller diameter. 5 Marks				
	b) The annual energy savings after modification, if the pump is operating for 6				
	hours/day and 330 days in a year. 5 Marks				
L-3	a) % Reduction of Impeller Diameter				
So1	a) // Noduction of imposion Planteton				
	Flow rate ∞ impeller diameter				
	Dnew/Dold = 450/485				
	Dnew = (450/485)*Dold				
	= 0.928 * Dold				
	% impeller diameter reduction = ((Dold- Dnew) / Dold)*100 = ((Dold- 0.928 * Dold)/ Dold)*100				
	= ((Dold-0.928 Dold) 100 = (1- 0.928)*100				
	= (0.072)*100				
	= 7.2 %				
	01 (0.00 c) (galas)				
	b) Annual energy saved after modification:				
	Hydraulic power required at rated condition = (Q* p * (hd-hs) * g) / 1000 = (485/3600)*(1000)*((135-5))*9.81/1000) = 171.81 kW				
	New discharge Head:				
	Old Flow=485 m ³ /hr New Flow=450 m ³ /hr				

Old discharge Head =13.5 x 10 = 135m New discharge Head=? (D2/D1)^2=(H2/H1) D2 =100-7.2 = 92.8% of D1 = 0.928 D1

H2=(D2/D1)^2*H1 = (0.928D1/D1)^2*135

= 116.25

Hydraulic power required at modified

condition = (Q*p*(hd-hs)*q)/1000

= (450/3600)*(1000)*((116.25-5)*9.81/1000

= 136.42 kW

Power savings due to impeller size

reduction by 7.2%

= (171.81 -136.42) = 35.39 kW

Annual energy savings = (35.39)*(6*330)

= 69,894 kWh/year

OR

Power (P) α D³ Flow (Q) α D So, Power α Q³

Power new = $(Q2/Q1)^3 \times 171.81$

= (450/485)³ x 171.81 = (0.799) x 171.81

= 137.3 kW

Power saving per year = $(171.81 - 137.3) \times 6 \times 330$

= 68,329.8 kWh/year

L-4 In a Thermal Power Station, the steam input to a turbine operating on a fully condensing mode is 100 Tonnes/hr. The heat rejection requirement of the steam turbine condenser is 555 kcals/kg of steam condensed. The head developed by the cooling water pump is 2.5 kg/cm².

During 4500 hours of normal operation per year, the cooling water temperatures at the inlet and outlet of turbine condenser are measured to be 27°C and 35°C and during the winter period operation of 3000 hours per year the cooling water temperatures at the inlet and outlet of turbine condenser are measured to be 15°C and 25°C.

Find out:

- i. The circulating cooling water flow for normal operation as well as for winter operation.
 5 Marks
- ii. Calculate the annual energy reduction during winter operation if the combined efficiency of the pump and motor is 70%.

 5 Marks

L-4 Sol

1. Cooling water requirement for normal operation at 27° C and 35° C (4500 Hours):

The quantity of heat rejected in the turbine condenser

= Quantity of steam condensed in kg x heat rejection in kCal /kg

= 100,000 x 555 = 55.5 million kCals /hr

Heat gained by circulating cooling water = Heat rejected in the condenser

Therefore, Cooling water flow

= 55.5 $\times 10^6$ / (35-27) x specific heat (1) $\times 1000 = 6937.5 \text{ m}^3/\text{hr}$

Head developed by the pump = 2.5 kg/cm^2

Hydraulic power required = (6937.5/3600)*25*9.81

= 472.62 kW

Combined efficiency of cooling water motor and pump = 70%

Input power required = (472.62/0.7) = 675.16 kW

2. Cooling water requirement for winter operation at 15° C and 25° C (3000 Hours):

The quantity of heat rejected in the turbine condenser

= Quantity of steam condensed in kg x heat rejection in kCal /kg

= 100,000 x 555 = 55.5 million kCals /Hr

Heat gained by circulating cooling water = Heat rejected in the condenser

Therefore,

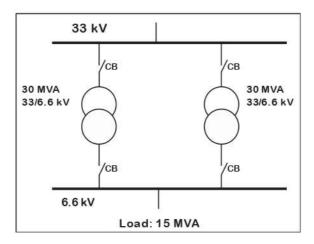
Cooling water flow = $55.5 \times 10^6 / (25-15) \times \text{specific heat } (1) \times 1000 = 5550 \text{ m}^3/\text{hr}$

Head developed by the pump = 2.5 kg/cm^2

Hydraulic power required = (5550/3600)*25*9.81

= 378.09 kW

Combined efficiency of cooling water motor and pump = 70%


Input power required = (378.09/0.7) = 540.13 kW

Energy reduction during winter operation = (675.16 - 540.13) x 3000 = 405090 kWh

L-5 a) A cold rolling mill has a maximum demand of 7 MVA at a power factor of 0.95. The plant management converts the existing electrical resistance annealing furnace having steady load of 1250 kW to gas heating as a cost reduction measure. The existing capacitor banks (kVAr) continued to be in the electrical network. What will be the effect on maximum demand and power factor due to this conversion?

5 Marks

b) A cement plant has a constant load of 15 MVA. It has installed two transformers of 30 MVA each. The no load loss and full load copper loss of each 30 MVA transformer is 25 kW and 75 kW respectively. From the energy efficiency point of view the industry management wants to take a decision on whether to operate a single transformer or two transformers equally sharing the load. What is your recommendation?
5 Marks

L-5 a) Sol

Registered maximum demand = 7 MVA = 7000 kVA

Electrical load (real power) = 7000 X 0.95 = 6650 kW

 $kVAr = \sqrt{(kVA^2 - kW^2)}$

 $kVAr = Vsqrt ((7000)^2 - (6650)^2)$

kVAr = 2186

kVAr in the plant will remain same.

Reduction in real power due to conversion is 1250 kW.

Revised real Power = 6650 - 1250 = 5400 kW

Revised kVA = $\sqrt{kW^2 + kVAR^2}$

= $\sqrt{(5400)^2 + (2186)^2}$

Revised kVA = 5825

Reduction in Electrical Demand = 7000 - 5825 = 1175 kVA

Revised Power factor

= 5400 / 5825 = 0.927

Reduction in Power Factor

= 0.95 - 0.927 = 0.023

B)

Option 1: One transformer in operation

% load = 15/30 = 50%

Total Loss

= P_{NOLOAD} + P_{COPPER LOSS} x (%load)²

 $= 25 + 75 \times (0.5)^2$

= 43.75 kW

Option II: Both transformers in operation

% load = 7.5/30 = 25%

Total Loss

= $[(P_{NOLOAD} + P_{COPPER LOSS} x (\%load)^2]x 2$

 $= [25 + 75 \times (0.25)^{2}] \times 2$

= 59.37 kW

It is economical to operate one transformer because the losses are less and there is a saving of 59.37 - 43.75 = 15.62 kW.

- L-6 a) Calculate the filter area of Air Handling Unit (AHU) for Refrigeration Load of 50 TR. The air enthalpy at inlet of AHU is 85 kJ/kg and at outlet is of 60 kJ/kg. Air velocity at filter is 1.81 m/sec and air density is 1.26 kg/m³. **5 Marks**
 - b) A no load test was conducted in a delta connected 37 kW induction motor.

Name plate data: 3 Phase, 415 V, 50 Hz, 55 Amp

Measured data at no load:

Voltage, V = 415 Volts; Current, I = 18 Amps; Frequency, F = 50 Hz;

Stator phase resistance at 30° C = 0.23 Ohms/phase

No load power = 955 Watts

Calculate:

i. The iron loss plus friction loss plus windage loss

- 2 Marks
- ii. Stator copper loss at name plate ratings (full load), considering stator temperature as 120 °C **2 Marks**
- iii. No load power factor of the motor

1 Mark

L-6 Sol

Ans:

Answer (a):

TR of AHU = (Enthalpy difference x density x area x velocity x3600)/ (4.187 x 3024)

Filter Area = TR *(4.187*3024)/(Enthalpy difference*density*Velocity*3600) = (50) *(4.187*3024)/(25*1.26*1.81*3600)

 $= 3.08 \text{ m}^2$

Where,

TR = 50 TR

Enthalpy difference = (85 - 60)= 25 kJ/kg

Air density at filter inlet = 1.26 kg/m^3

Air velocity at filter inlet =1.81 m/s

Answer (b):

Let iron loss plus friction loss plus windage loss be Pi+ fw

Stator copper loss, P_{st} , 30°C = 3x $(18/\sqrt{3})^2$ x0.23 = 74.51 Watt

$$P_i + fw = P_{nl} - P_{st} = 955 - 74.51 = 880.49 W$$

Stator resistance at 120 °C = 0.23 x [(120+235) / (30+235)] = 0.308 Ohms

Stator copper loss at name plate ratings = $3 \times (55/\sqrt{3})^2 \times 0.308 = 931.65$ Watt

No load power factor = $955 / (1.7321 \times 415 \times 18) = 0.0738$

----- End of Section - III -----

Marks: $50 \times 1 = 50$

20th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS – September, 2019

PAPER - 3: ENERGY EFFICIENCY IN ELECTRICAL UTILITIES

Section – I: OBJECTIVE TYPE

- i) Answer all **50** questions
- ii) Each question carries one mark
- iii) Please hatch the appropriate oval in the OMR answer sheet with HB pencil only, as per instructions

1.	In a pumping system, if the temperature of the liquid handled increases, then a) NPSHa increases
	b) NPSHa decreases c) NPSHa remains constant d) NPSHa and NPSHr are independent of temperature
2.	Which of the following component has maximum effect on cooling tower performance?
	a) Fill media b) drift c) louvers d) casing
3.	In a vapour compression refrigeration system, the quantum of energy transferred at condenser is more than the energy transferred at
	a) Compressor b) Expansion Valve
	c) Evaporator d) All of the above
4.	Demand side Management helps
	a) to reduce the energy losses b) to reduce system peak demand c) to promote energy efficiency among users. d) All of the above
5.	Which one of the following is true to estimate the range of cooling tower?
	a) Range = Cooling water inlet temperature – Wet bulb temperature b) Range = Cooling water outlet temperature – Wet bulb temperature
	c) Range = Wet Bulb Temperature – Cooling Water Inlet Temperature d) None of the above
6.	Modest flow variation between 80% to 100%, in a centrifugal fan is achieved more efficiently with
	a) Inlet damper b) Outlet damper
	c) Inlet guide vanes d) Impeller Change
7.	is used as refrigerant both in vapour compression and vapour absorption systems
	a) Lithium Bromide b) Water c) HFC 134A d) Ammonia

8.	In electrical distribution system, commercial loss covers discrepancies due to
	a) Meter Reading b) Metering c) Collection Efficiency d) All of the above
9.	Which of the following parameters is not required for evaluating volumetric efficiency of reciprocating air compressor?
	a) Power input b) FAD c) Cylinder Stroke d) Cylinder bore
10.	is not used for speed control.
	a) Variable Frequency drive b) Soft starter c) Hydraulic coupling d) Eddy current drives
11.	When compared to standard motors, energy efficient motors will have a) Higher slip b) Higher starting torque c) Lower No load current d) All the above
12.	For a given air requirement, providing higher volume air receiver will
	 a) Increase energy consumption b) Reduce energy consumption c) Reduce Unload Power d) Reduce Pressure fluctuations
13.	Harmonics generation will be more in
	a. Inverter drives b. LED Lamps c. Transformers d. Resistance heaters
14.	Thermal Power Plant efficiency is low due to
	a) Higher steam Pressure
	b) Higher superheat temperaturec) Low GCV coal
15.	d) Higher Heat loss in condenser Among the following, has highest design efficiency.
15.	
	a) High tension motorsb) Power transformers
	c) Alternators d) Electric melting furnaces
16.	The difference between wet bulb temperature and cooling water inlet temperature in a cooling tower is called
	a)Approach b) Range c) Effectiveness d) None of the above
17.	Technical loss in a distribution system can be reduced by
	a) Maintaining low HT/LT ratio b) Accurate meter reading
10	c) <u>High voltage supply to consumers</u> d) Improving Collection Efficiency
18.	Pressure drop can be reduced in a compressed air distribution line by providing

	a) After Coolers b) Small diameter distri c) High pressure air flow d) Large Diameter Dis	W		
19.	Power consumption is value a) Refrigeration type b) Blower reactivated ty c) Heat of compression d) Heatless purge type	/pe type	type of compre	ssed air dryers.
20.	A DC excitation is used	to vary the speed of		
	a) Eddy Current Coupb) fluid couplingc) variable frequency dd) None of the above			
21.	The isothermal power of actual power drawn by			I the efficiency is 76 %. The
	a) 56 kW	b) 94.7 kW	c) 89 kW	d) 72 kW
22.	Power factor improvem			
	a) Reduce input power c) Reduce the compres	to the motor sor motor shaft powe	b) Increase r d) <u>None c</u>	e input power to the motor of the above
23.	A 500-kVA transformer The calculated total tra the transformer?	is designed for No lo insformer loss is 166	ad loss of 750 watts 2 watts. What will b	and load loss of 5700 Watts. be the percentage loading of
	a) 54.8 %	b) 29 %	c) <u>40 %</u>	d) 25.7 %
24.	a) 100 % kVAr of the in b) 20 % of Motor Rating c) 25 % of Motor rating d) 90 % of the no-load	duction motor		hould be
25.	LLF in lighting calculation	on refers to		
	a) Light Load factor b) Light lumen factor c) Light Lux factor d) Light loss factor			
26.	A medium voltage end cascade efficiency of 82			transmission and distribution
	a) <u>101.2</u>	b) 68.1	c) 83	d) None of the above
27.				erating load of the engine is gas consumption will be
	a) <u>214.6</u>	b) 260.13	c)188.89	d) 272.74

28.	In an electrical power system, transmission efficiency increases as
	a) both voltage and power factor increases
	b) both voltage and power factor decrease
	c) voltage increases but power factor decreases
	d) Voltage decreases but power factor increases.
29.	Which of the following is expressed in terms of percentage?
	a) Absolute humidity
	b) Relative humidity
	c) Specific Gravity d) All of the above
30.	Which among the following is one of the parameters used to classify fans, blowers &
	Compressors?
	a) Volume flow rate
	b) Mass flow rate
	c) <u>Specific ratio</u>
	d) None of the above
31.	What is the function of drift eliminators in cooling towers?
	a) maximize water and air contact
	b) capture water droplets escaping with air stream
	c) enables entry of air to the cooling tower
	d) eliminates uneven distribution of water into the cooling tower
32.	Which of the following statements is not true regarding centrifugal pumps?
	a) Flow is zero at shut off head
	b) Maximum efficiency will be at design rated flow of the pump
	c) Head decreases with increase in flow
	d) Power increases with throttling
33.	Which of the following is not true with respect to Color Rendering Index (CRI)?
	a) The CRI is expressed in a relative scale ranging from 0 -100.
	b) CRI indicates, how perceived colors match with actual colors.
	 c) <u>LED lamps are having comparatively higher CRI than Incandescent Lamps.</u> d) The higher the color rendering index, the less color shift or distortion occurs
24	
34.	Flow control within a fan system will not change the fan characteristic curve.
	a) Inlet guide vaneb) speed change with variable frequency drive
	c) speed change with variable frequency drive
	d) discharge damper
35.	The primary purpose of inter-cooling in a multistage compressor is to
	a) remove the moisture in the air
	b) reduce the work of compression
	c) separate moisture and oil vapour

	d) none of the above					
36.	Illuminance of a surface is expressed in					
	a) radians	b) <u>lux</u>	c) lumens	d) LPD		
37.			d from 120 m ³ /hr to 11 ge reduction in impeller	0 m ³ /hr by trimming the size?		
	a)10.52 %	b) <u>8.34%</u>	c) 9.7 1%	d)17.1%		
38.	a) Open cyb) Diesel Ec) Combin	cle Gas Turbine	as the highest efficiency?			
39.	COP of a single of	-	geration system is likely	to be in the range		
	a) <u>0.6 to 0.7</u>	b) 1to 1.2	c) 1.5 to 2	d) 3.0 to 4.0		
40.		of heat is removed from I to	a room every hour then	the refrigeration tonnage will		
	a) 30.24TR	b) 3.024TR	c) 1TR	d) <u>10 TR</u>		
41.	a) Reduce b) Reduce c) Reduce	a) Reduce technical loss in distribution system b) Reduce commercial loss in distribution system c) Reduce capital investment d) Reduce energy bill for the end consumer				
42.	a) refrigeration capacity increases b) refrigeration capacity decreases c) specific power consumption remains same d) condenser load increases					
43.	A 4 pole 50 Hz	induction motor is runn	ning at 1470 rpm. What is	s the slip value?		
	a) 0.2	b) <u>0.02</u>	c) 0.04	d) 0.4		
44.	The basic function of an air dryer in an air compressor is to a) Prevent dust from entering the compressor b) Remove moisture before the intercooler c) Remove moisture in compressor suction d) Remove moisture in air supplied to the plants					
45.	Power factor is highest in the case of a) Sodium vapour lamps b) Induction lamps c) LED Lamps d) Incandescent lamps					

Paper 3 Code : Pink

46.	If the COP of a vapour compression system is 3.5 and the motor draws a power of 10.8 kW at 90% motor efficiency, the cooling effect of vapour compression system will be			
	a) <u>34 kW</u>	b) 42 kV	c) 2.8 kW	d) 3.4 kW
47.	The blow down require CoC of 3 is		ooling tower with evaporation	on rate of 16 m ³ /hr and
	a) 4	b) 5.3	c) <u>8</u>	d) 48
48.	The percentage reducto 0.95 is		ses when tail end power fac	ctor is raised from 0.8
	a) <u>29.4%</u>	b)15.5%	c)16.6%	d)24.7%
49.	Energy performance consumption to a) Built up area b) Carpet area c) Roof Area d) Window and Wall		is the ratio of total building	annual energy
50.	Which of the following	g is not a climate zone	as per ECBC classification	?
	a) hot-dry	b) warm-humid	c) <u>Cold-humid</u>	d) cold

..... End of Section – I

Marks: $8 \times 5 = 40$

Section - II: SHORT DESCRIPTIVE QUESTIONS

- (i) Answer all **Eight** questions
- (ii) Each question carries **Five** marks
- S-1 One of the Machining centres has installed 2 No's of 270 cfm compressors for pneumatic operation and also for cleaning operation of components after machining. The compressors are operated at 7 kg/cm²(g) and are on-load for 80 % of the time. The load Power and the un-load Power of each 270 cfm compressor is, 40 kW and 15 kW respectively. The energy audit estimated that cleaning air requirement is 60% of the air generated.

Calculate the daily energy consumption for cleaning air alone, assuming continuous operation of the compressor.

Ans:

Compressor capacity = 270 cfm % Loading = 80 %

Air Delivered by 2 compressors = $(270 \times 0.80 \times 2)$

Loading Power drawn by the compressors = 432 cfm= (40 + 40)= 80 kW

Un-Loading power drawn by the compressors = (15 + 15)= 30 kW

Average kW drawn by the compressors = $[(80 \times (0.8 \times 24)) + (30 \times (0.2 \times 24))]/(24)$

= 70 kW

SEC of compressor = (70/432)

= 0.162 kW/cfm

Cleaning air consumption at 7 Kg/cm² = (60 % of generation)

 $= (0.60 \times 432)$ = 259 cfm

Energy requirement for Cleaning air per day = $(259 \times 0.162 \times 24)$

= 1007 kWh/day

(or) Alternate Solution

= (Load Power x load time) + (Unload Power x Unload time)

 $= (40 \times 0.8) + (15 \times 0.2)$

= 32+3 = 35 KW

Average KW drawn by the compressors $= 35 \times 2 = 70 \text{ KW}$

Energy requirement for Cleaning air per day = (70 kW x 0.6) x 24 =1008 kWh/day

S-2 In a pharmaceutical industry a centrifugal pump is pumping 80 m³/hr of water into a pressurized

	container. The container pressure is 3 kg/cm²(g). The discharge head of the pump is 5 kg/cm²(g) and water level is 5 meters below the pump central line. If the power drawn by the motor is 22 kW, find out the pump efficiency. Assume motor efficiency as 90% and the water density as 1000 kg/m³.					
S-2- Sol	Ans:					
	SI. Parameter Process Value					
	1	Water Flow Rate (m³/hr)	given	80		
	2	Discharge Head (meters)	given	50		
	3	Suction Head (meter)	given	-5		
	4	Power input to Motor (kW)	given	22		
	5	Motor Efficiency	given	90%		
	6	Power Input to Pump (kW)	Sl. 4* Sl. 5	=22 x 0.9 = 19.8		
	7	Liquid kW	(Sl. 1/3600)*((Sl. 2*10) - Sl. 3)*9.81	= (80/3600) x (50 - (-5) x 9.81=11.98		
	8	Pump Efficiency	SI. 7 / SI. 6	60.56%		
S3	A refrigeration system designed with 10 TR AHU is operating at 8.25 TR. The measured air parameters are given below: Inlet enthalpy = 10.26 kcal/kg Outlet enthalpy = 7.26 kcal/kg. Specific volume of air = 0.83 m³/kg Calculate the volume of air in m³/hr handled by AHU.					
	Ans:					
S4	A fan is designed for 1300 m³/hr, 50 Hz and drawing 3 kW. If the fan is operated with VFD at 37 Hz for 6000 hours, calculate the velocity of air, when air is supplied through 150 mm diameter duct and the annual energy savings.					
	Ans:					
	Power Drawn at 50 HZ = 3 kW Operating frequency = 37 Hz Flow at 37 Hz = $1300 \times (37 / 50)$ = $962 \text{ m}^3/\text{hr}$					
	Diameter of the duct = 150 mm Area of the duct = 0.0177 m ²					

	Velocity of the air in the duct		= [(962 / 3600)] / [(0.0177)]
	Power consumption with 37 Hz		= 15.09 m/s = (37/50) ³ x 3
	1 ower consumption with of 112		= 1.22 kW
	Annual Energy Savings for 6000 hours ope	eration	= 6000 x (3 -1.22) = 10,680 kWh
S5	A foundry unit draws power to the tune o operation is given below:	f 2500 kW. T	he demand observed during furnace
	5 minutes : 2940 kVA 7 minutes : 2550 kVA 3 minutes : 2777 kVA		
	If the billing meter is monitoring demand energistered and also the average PF, during the		
	Ans:		
	Maximum demand registered	= [2940 * (5) = [980 + 119 = 2725.4 kV/	
	PF 5 minutes: 2940 KVA	= (2500 / 294 = 0.85	10)
	7 minutes 2550 KVA	= (2500 / 255 = 0.98	50)
	3 minutes 2777 kVA.	= (2500 / 277 = 0.90	77)
	Average PF	= [0.85 *(5/1 = 0.92	5) + 0.98* (7/15) + 0.9 * (3/15)]
S6	A process plant has installed 4-cell cooling to at 40 kW at 1450 rpm. As a part of the energy replaced with two speed motors which wou towers are operated at high speed mode for 5 a year.	gy conservatior Id operate at	n program, the existing fan motors are 1450 rpm and 740 rpm. The cooling
	Estimate the annual energy savings when co speed of 1450 rpm.	ompared to op-	eration of fans continuously at a fixed
	Ans:		
	Present energy consumption of all 4 fans		= (4 x 40 x (5300 + 1800)) = 11,36,000 kWh
	Energy consumption for fans at 1450 rpm for	5300 hours	= (4 x 40 x 5300) = 8,48,000 kWh
	Energy consumption for fans at 740 rpm for 1	800 hours	= [(740/1450) ³ x 40 x 4 x 1800] = 38281 kWh
	Annual savings		= [11,36,000 - (8,48,000+38,281)] = 2,49,719 kWh
S7	Write short notes on any two of the following	ng:	(Each 2.5 Marks)
	 Integrated Part Load Value (IPLV) for Evaporative Cooling 	chillers	

Paper 3 Code : Pink

	3.	Heat Pump		
	Ans:			
	1. 2. 3.	3	(Page No. 126) (Page No. 136) (Page No. 133)	
S8	Write	short notes on any two of the following:		(Each 2.5 Marks)
	1. 2. 3.	3 · · · · · · · · · · · · · · · · · · ·		
	Ans:			
	1. 2. 3.	Solar Heat Gain Coefficient (SHGC), Visible Light Transmittance (VLT), Cool Roof,	(Page No. 272) (Page No. 272) (Page No. 271)	

 End of	Section	- 11	
	OCCUO!!	•••	

Marks: $6 \times 10 = 60$

Section - III: LONG DESCRIPTIVE QUESTIONS

- (i) Answer all **Six** questions
- (ii) Each question carries **Ten** marks
- A. For each one of the following, mention whether they belong to "Prescriptive Method" or "Whole Building Performance Method".

(5 Marks)

- Compliance by meeting or exceeding specific levels for each individual element of building
- 2. Allows Trade-off option for building envelope
- 3. Allows use of energy simulation software
- 4. Computer model of the proposed design (energy consumption) is compared with Standard Design
- 5. Compliance if energy use in proposed design is less than energy use in standard design
- B. Match the Following:

(5 Marks)

1.	Building envelope	a)	Day lighting of building
2.	Passive solar design strategy	b)	Exfiltration and Infiltration of air
3.	Visual Light Transmittance	c)	Roof, walls, windows, skylights, doors and other openings
4.	Weather stripping	d)	Property of high solar reflectance and emittance
5.	Cool roof	e)	Cross ventilation

Ans:

A.

- 1. Prescriptive Method
- 2. Prescriptive Method
- 3. Whole Building Performance Method
- 4. Whole Building Performance Method
- 5. Whole Building Performance Method

В.

1	Building envelope	С	Roof, walls, windows, skylights, doors and other openings
2	Passive solar design strategy	Е	Cross-ventilation
3	Visual Light Transmittance	Α	Day lighting of building
4	Weather stripping	В	Exfiltration and Infiltration of air
5	Cool roof	D	Property of high solar reflectance and emittance

An energy audit was conducted in a large machine shop and the audit report suggested replacing 30 machine motors with energy efficient motors. The loading details of old and new motors are given below:

Motor Rating in kW	Operating Load %	Old Motor Efficiency%	New Motor efficiency%	No of motors
7.5	75	86	89	12
11.5	85	88	91	7
15	70	89	92	11

Assuming motor loading in both cases remains same, calculate the annual energy savings, for 4000 hours operation per year.

Ans:

Motor Rating in KW	Operating Load %	Actual Old Motor Load In kW	Actual New Motor Load In kw	Old Motor efficiency	New Motor efficiency	No of motors
7.5	75	7.5/0.86=8.72 =8.72x 0.75=6.54	7.5/0.89=8.43 =8.43x 0.75= 6.32	86	89	12
11.5	85	11.5/0.88=13.07 =13.07 x 0.85= 11.11	11.5/0.91=12.64 =12.64 x 0.85= 10.74	88	91	7
15	70	15/0.89=16.85 =16.85x 0.7= 11.79	15/0.92=16.30 =16.30 x 0.7 11.41	89	92	11

Annual Savings for 7.5 KW Motors, 12 numbers, operating 4000 hours

 $= [4,000 (6.54-6.32) \times 12]$

= 10,560 kWh

Annual Savings for 11 KW Motors, 7 numbers, operating 4000 hours

 $= [4000 (11.11 - 10.74) \times 7]$

= 10,360 kWh

Annual Savings for 15 KW Motors, 11 numbers operating 4000 hours

 $= [4,000 (11.79-11.41) \times 11]$

= 16,720 kWh

Total annual savings for 30 high efficiency motors

= 37,640 kWh

- L3 A 10 MW co-generation plant is operating at a daily load factor of 85 %. Power is generated at 11 KV.
 - > 35 % of the power generated, is exported to grid, through a 7.5 MVA Transformer with 99 % efficiency.
 - > 32 % power generated, is supplied to mill motors, at 600 Volts, through a 5 MVA step down transformer, with 98 % efficiency.
 - ➤ The balance power generated is supplied to other LT Loads and auxiliaries, at 415 Volts, through a 2 MVA transformer, with 98 % efficiency.

('Olouloto	tha	tal	10111100.
Calculate	1111	1()	10) VV 11 10 1
Calculate			

- 1) Daily energy exported to grid at 33 KV.
- 2) Daily mill motors consumption at 600 V.
- 3) Daily LT loads and auxiliary consumption at 415 V.
- 4) Daily transformers losses in kWh and % transformers losses

(Each 2.5 Marks)

Ans:

1.

Daily generation = $(10,000 \times 0.85 \times 24)$ = 2,04,000 kWh

Daily energy generation for export purpose = $(2,04,000 \times 0.35)$

= 71,400 KWh

7.5 MVA transformer loss = $[71,400 - (71,400 \times 0.99)]$

=(71,400-70,686)

= 714 kWh

Net energy export to the Grid at 33 KV level = (71,400 kWh - 714 kWh)

=70,686 KWh

2.

Daily energy generation for mill motor consumption $= (2,04,000 \times 0.32)$ = 65,280 kWh

 $5 \text{ MVA Transformer loss} = [65,280 - (65,280 \times 0.98)]$

= (65,280 - 63,974.4)

= 1,306 kWh Net mill Consumption = 63,974 KWh

3.

Daily generation for LT loads & Auxiliary consumption = $(2,04,000 \times 0.33)$

= 67,320 kWh2MVA Transformer loss $= [67320 \cdot (67320 \times 0.98)]$

= 67,320 - 65,974

= 1,346 kWh Net LT loads & Auxiliary Consumption = 65,974 kWh

4.

Transformers losses = (714 + 1306 + 1346)

= 3,366 kWh day

% transformers losses = $(3,366 / 2,04,000) \times 100$

= 1.65 %

(Or)

To meet the plant LT loads and co-gen auxiliary load, the transformer capacity should be more than 2 MVA.

L4 A small machine shop has installed 220 cfm screw compressor to meet air requirement for various operation. The operating details are given below:

Shift reference (8 hrs/ Shift)	Load time in sec	Un-Load time in sec
I	60	10
II	45	25
III	25	45

Load Power = 37 KW Un-load power = 11 KW

Calculate the following:

- 1. Energy loss per day (4 Marks)
- 2. Shift wise average air requirement in cfm (2 Marks)
- 3. The plant has proposed to install a VFD for the compressor. Calculate the energy savings after installing the VFD operated compressor, if the VFD loss is 3 % of load power.

(4 Marks)

_		
Λnc	•	
Allo		

 I^{st} shift consumption = $((60 / 70) \times 37) + (10 / 70) \times 11) \times 8)$

 $= (31.71+1.57) \times 8$

= 266.24 kWh

IInd shift consumption = $((0.64 \times 37 + 0.36 \times 11) \times 8)$

 $= (23.68 + 3.96) \times 8$

= 221.12 kWh

IIIrd shift consumption = $((0.36 \times 37 + 0.64 \times 11) \times 8)$

 $= (13.32 + 7.04) \times 8)$

= 162.88 kWh

Daily Total Energy consumption = (266.24 + 221.12 + 162.88)

= 650.24 kWh

Daily Energy loss due to unloading = $(1.57 + 3.96 + 7.04) \times 8$

= 100.56 kWh

Daily load cycle Energy consumption = (650.24 - 100.56)

= 549.68 kWh

Daily energy consumption with VFD = (549.68 / 0.97)

= 566.68 kWh

```
= (566.68 - 549.68)
     Daily Energy loss due to VFD
                                                       = 17 kWh
     Daily Net Energy savings with VFD compressor = (100.56 - 17)
                                                       = 83.56 \text{ kWh}
     Ist shift air requirement
                                                        = (0.86 \times 220)
                                                        = 189.2 cfm
     IInd shift air requirement
                                                        = (0.64 \times 220)
                                                        = 140.8 cfm
     III<sup>rd</sup> shift air requirement
                                                        = (0.36 \times 220)
                                                        = 79.2 cfm
L5
    (a) What is L/G ratio and how it is useful in operation of a cooling tower?
                                                                                               (3 Marks)
     (b) What are the functions of fill media in a cooling tower?
                                                                                               (3 Marks)
     (c) Calculate the L/G ratio for the cooling tower given the following:
                                                                                               (4 Marks)
         Water Flow
                                               = 4540 \text{ m}^3/\text{hour}
         Approach
                                               = 4.45 °C
         Air entering enthalpy at 26.67 °C = 24.17 kcal/kg
         Air leaving enthalpy at 37.8 °C
                                              = 39.67 Kcal/kg
                                              = 47.77 °C
         Hot water temperature
         Cold water temperature
                                              = 31.11°C
     Ans:
     a) Page 205
     (b) Page 209
     c)
                         = (h_2 - h_1) / (T_1 - T_2)
     L/G
     L(47.77 - 31.11) = G(39.67 - 24.17)
           L/G Ratio = (39.67 - 24.17)/(47.77 - 31.11)
                         = 0.93
```

Paper 3 Code: Pink

In an energy audit of a fan, it was observed that the fan was delivering 24,000 Nm³/hr of air.
 Suction static pressure was recorded as -15 mm WC and discharge static pressure as 35 mmWC.

The power measurement of the motor using power analyzer was recorded as 7 kW. The motor operating efficiency taken from motor performance curve was 90%. What is the static efficiency of the fan?

b) Match the Following

Heat Pump – NPSHR
 Compressor – Static Head
 Pumping Pressure – Static Pressure
 Fan – Compressor

5. Pump – Free air delivery test

Soln:

a)

Q = 24.000 Nm³ / hr. = 6.67 m³/sec Static pressure rise = 35 - (-15)= 50 mmWC

 $\eta_s = ?$

Power input to motor = 7 kW

Power input to fan shaft = $7 \times 0.90 = 6.3 \text{ kW}$

Fan static $\eta = \frac{\text{Volume in } \text{m}^3/\text{sec } \text{x } \Delta P_{\text{st}} \text{ in mmWc}}{102 \text{ x Power input to shaft}}$ = (6.67 x 50) / (102 x 6.3) = 0.519 (or) = 51.9 %

b) Match the Following

Heat Pump – NPSHR (5)
 Compressor – Static Head (3)
 Pumping Pressure – Static Pressure (4)
 Fan – Compressor (1)

5. Pump – Free air delivery test (2)

----- End of Section - III -----

Marks: $50 \times 1 = 50$

19th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS - SEPTEMBER, 2018

PAPER - 3: ENERGY EFFICIENCY IN ELECTRICAL UTILITIES

Section – I: O	BJECTIVE	TYPE
----------------	----------	------

- (i) Answer all **50** questions
- (ii) Each question carries **One** mark
- (iii) Please hatch the appropriate oval in the OMR answer sheet with **HB pencil only.** as per instructions

1.	Which of the follow	ving incandescent bulbs will	have	e the least resistance ?
	a) 220 V, 60 W		b)	220 V, 100 W
	c) 115 V, 60 W		d)	115 V, 100 W
2.	,	<u> </u>		was 1200 kVA with the power factor of 0.86. by adding capacitors. What is the reduction
	a) 144		b)	<u>147</u>
	c) 171		d)	163.3
3.				pole 3 phase induction motor operating at
	a) 85.0 %	s pf. What will be the motor e		94.5 %
				None of the above
	<u> </u>	1	d)	
4.	a) Increase the pre	r-cooling in a multistage com	-	Reduce the work of compression
	-			_
		re and oil vapour	d)	None of the above
5.	One ton of refrigera	tion is not equal to	٠ 1 ١	2.51.137
	a) 3024 kCal/hr		b)	3.51 kW
	c) 12000 Btu/hr		d)	860 kCal/hr
6.	-	ips operate in series, their sh		
	a) Not affected		b)	More than double
	c) <u>Doubled</u>		d)	Less than double
7.	Which of the followi	ng is not a part of vapour co	mpre	ession refrigeration cycle ?
	a) Compressor		b)	Evaporator
	c) Condenser		d)	<u>Generator</u>
8.	=	ned by an air conditioner conico (Watt/Watt) is	mpr	essor is 1.7 kW per ton of refrigeration, then its
	a) 1.7		b)	<u>2.1</u>
	c) 0.59		d)	None of the above

9.	The adsorption material used in an adsorption air dryer is			
	a) Calcium chloride	b) Magnesium chloride		
	c) Activated alumina	d) Potassium chloride		
10.	The cooling tower size is to the end load, range and approach are constant.	entering Wet Bulb Temprature (WBT), when the he	at	
	a) Directly proportional	b) <u>Inversely proportional</u>		
	c) Constant	d) None of above		
11.	The T5, T8 and T12 fluorescent tube light are c	categorized based on		
	a) Diameter of the tube	b) Length of the tube		
	c) Both diameter and length of the tube	d) Power consumption		
12.	If the wet bulb temperature of air is 38 °C, then	n it's relative humidity is%.		
	a) 38 %	b) 90 %		
	c) 100 %	d) <u>Insufficient data</u>		
13.	The hydraulic power in a pumping system depen	ends on		
	a) Pump efficiency	b) Motor efficiency		
	c) Both motor and pump efficiency	d) None of the above		
14.	Small diameter by-pass lines are installed in pu	amps sometimes to		
	a) Save energy	b) Control pump delivery head		
	c) Prevent pump running at zero flow	d) Reduce pump power consumption		
15.	It is acceptable to run pumps in parallel provide	ed their are similar		
	a) Suction heads	b) Discharge heads		
	c) <u>Closed valve heads</u>	d) Total head at full flow		
16.	L / G ratio in a cooling tower is the ratio of	·		
	a) Length and girth	b) Length and Temperature gradient		
	c) Water flow rate and air mass flow rate	d) Air mass flow rate and water flow rate		
17.	Fiberglass Reinforced Plastic (FRP) fans consum	ne less energy than alluminum fans because		
17.	a) They are lighter	b) They have better efficiencies		
18.	, , , , ,	d) They deliver less air flow ap to the power consumed (watt) by the lamp is call	ed.	
10.	a) Luminous intensity	b) Luminous efficacy	cu	
	c) Reflectance	d) Luminance		
	,	,		
19.	Illuminance of a surface is expressed in			
	a) Radians	b) <u>Lux</u>		
	c) Lumens	d) LPD		

20.	Use of soft starters for induction motors results in			
	a)	Lower mechanical stress	b)	Lower power factor
	c)	Higher maximum demand	d)	All the above
21.		e Energy Performance Index (EPI) of a building d as defined in the Energy Conservation Act, 2		per Energy Conservation Building Code (ECBC) is:
	a)	kWh per square meter per year	b)	kWh per square meter
	c)	kW per square meter	d)	kWh per year
22.	En	ergy Conservation Act covers buildings having	a co	onnected load of
	a)	100 kW and above	b)	100 kVA and above
	c)	500 kW and above	d)	All buildings with HT connection
23.	In	a solar PV system the conversion from DC to A	AC is	s carried out by
	a)	Converter	b)	Charger
	c)	Battery	d)	<u>Inverter</u>
24.		e inlet air temperature to a two stage reciproleowing 2^{nd} stage inlet temperature's the compr		ting air compressor is 35 °C. At which of the or will consume least power?
	a)	75 °C	b)	65 °C
	c)	60 °C	d)	<u>50 °C</u>
25.		fan is drawing 16 kW at 800 RPM. If the spee e fan would be	d is	reduced to 600 RPM then the power drawn by
	a)	12 kW	b)	9 kW
	c)	6.75 kW	d)	None of the above
26.	In	which of the following fans air enters and leave	es tł	ne fan with no change in direction?
	a)	Forward curved	b)	Backward curved
	c)	Radial	d)	<u>Propeller</u>
27.		creasing the Cycles of Concentration (C.C.)	O.C)	of circulating water in a cooling tower,
	a)	Increase	b)	<u>Decrease</u>
	c)	Not change	d)	None of the above
28.	effi	can be achieved using infrared, aco	usti	c, ultrasonic or microwave sensors for energy
	a)	Time-based control	b)	Daylight-linked control
	c)	Occupancy-linked control	d)	Localized switching
29.	Th	e 5 th and 7 th harmonic in a 50 Hz power suppl	y sy	stem will have:
	a)	Voltage and current distortions with 55 Hz $\&$	57 I	Hz
	b)	Voltage and current distortions with 500 Hz &	& 70	0 Hz
c) Voltage and current distortions with 250 Hz & 350 Hz			350 Hz	

	d)	No voltage and current distortion at all		
30.		7.5 kW, 415 V, 15 A, 970 RPM, 3 phase rate aws 7.5 A and 3.23 kW of input power. The per		duction motor with full load efficiency of 86 % tage loading of the motor is about
	a)	<u>37 %</u>	b)	43 %
	c)	50 %	d)	None of the above
31.	A 1	two pole induction motor operating at 50 Hz, w	ith	1 % slip will run at an actual speed of
	a)	3000 RPM	b)	3030 RPM
	c)	2970 RPM	d)	None of the above
32.		e value, by which the pressure in the pum pressed as	ıp s	uction exceeds the liquid vapour pressure, is
	a)	Net positive suction head available	b)	Static head
	c)	Dynamic head	d)	Suction head
33.		nich of the following ambient conditions will ver?	eva	porate minimum amount of water in a cooling
	a)	35 °C DBT and 30 °C WBT	b)	38 °C DBT and 31 °C WBT
	c)	38 °C DBT and 37 °C WBT	d)	35 °C DBT and 29 °C WBT
34.		fan is operating at 970 RPM developing a 0 mmWC. If the speed is reduced to 700 RPM,		w of 3000 Nm ³ /hour at a static pressure of static pressure (mmWC) developed will be
	a)	244.3	b)	650
	c)	469	d)	None of the above
35.	Se	lect the incorrect statement:		
	a)	Transformers operating near saturation level	crea	ate harmonics
	b)	Devices that draw sinusoidal currents harmonics	wh	en a sinusoidal voltage is applied create
	c)	Harmonics are multiples of the supply freque	ncy	
	d)	Harmonics occur as spikes at intervals which	are	multiples of the supply frequency
36.		te illuminance is 10 lm/m^2 from a lamp at 1 m lbe	nete	r distance. The illuminance at half the distance
	a)	40 lm/m ²	b)	10 lm/m^2
	c)	5 lm/m ²	d)	None of the above
37.		an engine room 15 m long, 10 m wide and 4 anges/hr is	m h	igh, ventilation requirement in m³/hr for 20 air
	a)	6000	b)	9000
	c)	12000	d)	None of the above

38.	A package air conditioner of 5 TR capacity deliv (W/W) is 2.90, the power in kW drawn by comp	vers a cooling effect of 4 TR. If Energy Efficiency Ratio ressor would be:
	a) <u>4.84</u>	b) 1.38
	c) 1.724	d) None of the above
39.	A 5 kVAr, 415 V rated power factor capacitor. The operating supply voltage at the same supply	was found to be having 5.5 kVAr operating capacity. y frequency would be approximately.
	a) 400 V	b) 415 V
	c) <u>435 V</u>	d) None of the above
40.	The Solar Heat Gain Coefficient (SHGC) of wind	ow of a building is 0.30. This means that
	a) The window allows 70 % of the sun's heat to	pass through into interior of the buildings
	b) The window allows 30 % of the sun's hear	t to pass through into the building interior
	c) 70 % of the sun's heat is incident on the win	ndow
	d) The window reflects back to exterior a minir	num of 30 % of the sun's heat
41.	The most energy intensive heat transfe system is:	r loop of a vapour compression refrigeration
	a) Indoor air loop	b) Chilled water loop
	c) Refrigerant loop	d) <u>Condenser water loop</u>
42.		th 2 nos. of 500 MW units has reported the operating bad Factor (PLF) of the power plant is 73 %. be
	a) 38 %	b) 35 %
	c) 30 %	d) 32 %
43.	Aggregate Technical & Commercial loss in distr	ibution system covers
	a) I ² R losses of all transformers	b) Transmission & distribution loss
	c) Only transmission losses	d) Energy and monetary loss
44.		kW operating at 49 Hz. As an energy conservation `D) was installed and the fan was operated at
	a) 36 kW	b) 17.2 kW
	c) 34.7 kW	d) 35 .7 kW
45.	The isothermal power of a 500 CFM air c The actual power drawn by the compressor will	ompressor is 72 kW and the efficiency is 78 %. be
	a) 56 kW	b) 92 kW
	e) 72 kW	d) None of the above
46.	A heat pump used in a heat recovery application by the heat pump is 23 kW. The estimated heat	on extracts 66220 kcal/hr and the power consumed supplied by the heat pump is
	a) 2916 kcal/hr	b) 47300 kcal/hr
	c) 86860 kcal/hr	d) 86000 kcal/hr
	, ,	

47. A coal fired boiler primary air fan is maintaining a velocity pressure of 70 mmWC and the air temperature is 38°C. The density of the air is 1.135 kg/m³ and the pitot tube constant is 0.85. The velocity of air in m/sec will be a) 25.6 b) **29.56** c) 28.67 d) None of the above 48. A two stage air compressor drawing 75 kW has heat rejection of 862 kCal/kWh. The required capacity of the cooling tower when the operating temperature difference of 5 °C will be ____TR. b) 107.5 a) **21.55** c) 22.93 d) 57.4 The star rating scheme of Fluorescent Tube light as per BEE Standards & Labelling Scheme is based on Lumen Output b) Lux per Watt c) Lux per Watt per m² d) Lumen per Watt at different operating hours A pump with 230 mm diameter impeller is delivering a flow of 150 m³/hr. If the flow is to be reduced to 110 m³/hr by trimming the impeller, what should be the approximate impeller size? a) 195 mm b) 175 mm 207 mmc) **169 mm** d)

----- End of Section - I -----

Marks: $8 \times 5 = 40$

Section - II: SHORT DESCRIPTIVE QUESTIONS

- (i) Section II contains **<u>Eight</u>** questions (S1-S8)
- (ii) Each question carries **Five** marks

S-1	The operating data of an induced draft-cooling tower is as follows:		
	Observed range	: 8 °C.	
	Cooling water flow rate	: 12,500 m ³ /hr	
	Drift loss	: 0.1 % of circulation rate	
	Wet Bulb Temperature	: 27 °C	
	Ambient Dry Bulb Temperature	: 35 ⁰ C	
	Effectiveness	: 67 %	
	Cycle of Concentration	: 3	
	Estimate the evaporation loss; make up water requirement and TR load of cooling tower.		
Ans	s Evaporation loss = 0.00085 X 1.8 X 12500 X 8 = 153 m ³ /hr		
	Blow Down = $153 / (3-1) = 76.5 \text{ m}^3/\text{hr}$		
	Make up =153 + 76.5 + (12500*0.001)= 242 m ³ /hr		
	Heat load =12500*1000*8/3024=33069 TR		

Ans	Total head				ation load
			36 – 5 = 31 m		
71113	Pump shaf	t nower	70×0.9		
	T dillip bilds	- poe2	63 kW		
	Flow rate		(63 x 1000) X 0.6 /	31 x 1000 x 9.81	
			0.124297 m ³ /s		
			447.5 m ³ /hr		
	Refrigeration	on load	(447500 x 5) / 3024	1	
			740 TR		
5-3	In an air washer of a textile humidification system with an airflow of 3000 m³/h at 25 °C and 10 % relative humidity is humidified to 60 % relative humidity by adding water through spray nozzles. The specific humidity of air at inlet and outlet are 0.002 kg/kg of dry air and 0.0062 kg/kg of dry air respectively. The density of air at 25 °C is 1.184 kg/m³. Calculate the amount of water required in kg/hr.				
Ans	The amount of water	er required:			
Alls	mw = $v \rho (\omega_{out} - \omega_{in})$ = 3000 X 1.184 X (0.0062- 0.002) = 14.9 kg/h				
S-4	In a Thermal Power Station, the steam input to a turbine operating on a fully condensing mode is 100 TPH. The heat rejection requirement of the steam turbine condenser is 555 kcal/kg of steam condensed. The temperature of cooling water at the inlet and outlet of the turbine condenser is 27 °C and 37 °C respectively. Find out the circulating cooling water flow.				
Ans	The quantum of heat rejected in the turbine condenser				
	= Quantum of steam condensed (kg) x heat rejection (kcal/kg)				
	= $100,000 \times 555$ = $55.5 \text{ Million kcal/h}$.				
	Heat gained by circulating cooling water = Heat rejected in the condenser				
	Circulating cooling water flow				
	= 100,000 x 555 / (37-27) x specific heat (1)				
	$= 5550 \text{ m}^3/\text{hr}$				
S-5	List any five benefits of power factor improvement in an industrial power distribution system				
Ans		lo 3, Chapter 1, Page No 11			
S-6	During the perform	ance evaluation of a DG set, th	ne following paramet	ers were noted	
	Capacity	of DG set	1500	kVA	
	Test dur	ration	36	minutes	
	Units ge	nerated	442	kWh	

	·				•
		Average Power factor	0.92	pf	
	Length of diesel tank		90	cm	
	Width of diesel tank		90	cm	
	Height of the diesel tank		90	cm	
	Initial tank dip level (from top)		63	cm	
	Final tank dip level (from top)		79	cm	
	Calculate	the following:			
	1. Diesel consumption (Litres) (1 Mark) 2. Average load (kW) (1 Mark) 3. Percentage Loading (%) (2 Marks) 4. Specific power generation (kWh/Litre) (1 Mark)				
Ans	1. Diesel Consumption = 0.9x0.9x0.16 =129.6 Liters 2. Average load (kW) = (442/36)x60 =736.7 kW 3. Percentage Loading (%) = (736.7/.92)/1500 =53% 4. Specific power generation (kWh/Litre) (442/129.6) =3.41 kWh/Litre				
	How does a motor lose its efficiency upon rewinding?(2.5 Marks)				
S-7	What two parameters will indicate the efficacy of the rewinding? (2.5 Marks)				
Ans	Refer Guide Book No 3, Chapter 2, Page No 61				
S-8	A medium sized engineering industry has installed two 480 CFM screw compressors, A & B. Compressor-A is operating at full load and Compressor-B is running in load - unload condition. The load power of both the compressor is 74 kW and the unload power of the Compressor-B is 26 kW. Both the compressors are operated during working day. The percentage loading of the Compressor-B during working day is 64 %. After arresting the leakage in the system the loading of the compressor was found to be 35 %. Estimate the energy savings per day.				
_	Existing (1 337		
Ans		nsumed per hour by Compressor -A= 74		- E6 70 1-W	
		nsumed per hour by Compressor -B= 0.6			
		gy consumed (Compressor A& B) = 74		w/nr	
		nsumed per day= 130.72 X 24 hrs = 313	7.3 kWh/day		
		Calculation:			
		nsumed per hour by Compressor -B= 0.6			
		nsumed per hour by Compressor -B= 0.3		= 42.8 kW	
		in power consumption = 56.72 - 42.8	•		
	Savings by arresting leakage per day= 13.92 X 24 = 334 kWh/day				

----- End of Section - II -----

Marks: $6 \times 10 = 60$

Section - III: LONG DESCRIPTIVE QUESTIONS

- (i) Section III contains $\underline{\mathbf{Six}}$ questions (L1- L6)
- (ii) Each question carries **Ten** marks

A food processing plant has a contract demand of 2500 kVA with the power supply company. The average maximum demand of the plant is 2000 kVA at a power factor of 0.95. The maximum demand is billed at the rate of Rs.300/kVA. The minimum billable maximum demand is 75 % of the contract demand. An incentive of 0.5 % reduction in energy charges component of electricity bill are provided for every 0.01 increase in power factor over and above 0.95. The average energy charge component of the electricity bill per month for the company is Rs.10 lakhs. The plant decides to improve the power factor to unity. Determine the power factor capacitor kVAr required, annual reduction in maximum demand charges and energy charge component. What will be the simple payback period if the cost of power factor capacitors is Rs.800/kVAr?

Ans

kW drawn	2000 x 0.95 = 1900 kW
Kvar required to improve power factor from 0.95 to 1	kW ($\tan \theta 1 - \tan \theta 2$)
	kW (tan (\cos - θ 1) – tan (\cos - θ 2)
	1900 (tan (cos-0.95) – tan (cos-1)
	1900 (0.329 - 0)
	625 kVAr
Cost of capacitors @Rs.800/kVAr	Rs.5,00,000
Maximum demand at unity power factor	1900/1 = 1900 kVA
75 % of contract demand	1875 kVA
Reduction in Demand charges	100 kVA x Rs.300
	Rs.30000 x 12
	Rs.3,60,000
Percentage reduction in energy charge from 0.95 to 1 @ 0.5 % for every 0.01 increase	2.5 %
Monthly energy cost component of the bill	Rs.10,00,000
Reduction in energy cost component	10,00,000 x (2.5/100)
	Rs.25,000/month
Annual reduction	Rs.25,000 x 12
	Rs.3,00,000
Savings in electricty bill	Rs.6,60,000
Investment	Rs.5,00,000
Payback period	5,00,000/6,60,000
	0.76 years or 9 months

L-2 Write short notes on the following with respect to the compressed air system :

(each carries 2.5 Marks)

- a) Refrigeration drier
- b) Heat of compression drier
- c) Role of air receiver
- d) Dew point
- a) Refer Guide Book No 3, Chapter 3, Page No 94
- b) Refer Guide Book No 3, Chapter 3, Page No 95
- c) Refer Guide Book No 3, Chapter 3, Page No 97
- d) Refer Guide Book No 3, Chapter 3, Page No 93

L-3

In a boiler, the forced draught fan develops a total static pressure of 300 mmWC. Determine the shaft power (in kW) required to drive the fan if 10,000 kg of coal is burnt per hour with 13 kg of air per kg of coal burnt. The boiler house temperature is 20 °C and static efficiency of the fan is 80 %.

The operating air density may be calculated from the following:

R = 847.84 mmWC r	m ³ /kg mole K and Molecular weight of air, M = 28.92 kg/kg mole.	
Total Pressure = 300 mm of WC		
Mass of air handled, m = 10000 × 13/ 3600 = 36.11 kg/s		
Atmospheric pressur	re, $P = 1 \text{ kg/cm}^2 = 10 \text{ mtr of WC} = 10,000 \text{ mm of WC}$.	
Temperature T = 20 + 273 = 293 K		
Gas Constant for air, R = 847.84 mm WC m3/kg mole K		
Molecular weight of air, M = 28.92 kg/kg mole		
Density, kg/m ³	= $(P \times M) / (R \times T) = (10000 \times 28.92) / (847.84 \times 293)$ = 1.164 kg/m^3	
Volume in m ³ /s	= mass (kg/s) / density (kg/m3) = 36.11 / 1.164 = 31.02 m ³ /s	
Power to fan shaft, kW		
	= [Volume (m 3 /s) x Total pressure (mm of WC)] / [102 x fan efficiency] = [31.02 x 300] / [102 x 0.8] = 114 kW	

L-4 A 7.5 TR package air conditioner is provided for a UPS room for removing the heat generated from the UPS of rated capacity 40 kVA. The following parameters were noticed while performing the assessment of the total system.

UPS Parameters:

Ra	ting	Input Power (kW)	Output Power (kW)
	On Load (16 hrs)	11.94	8.61
40 kVA	No Load (8 hrs)	1.16	0.00

Air conditioner parameters:

in conditioner parameters.		
Installed capacity of Air conditioner	7.5	TR
Outdoor unit (condenser) air velocity	6.1	m/s
Radius of the fan opening at the point of velocity measurement in outdoor unit	0.30	M
Air Density	1.174	kg/m ³
Ambient temperature	305	0K
Temperature of hot air (condenser outlet)	313.5	0Κ
Specific heat of air	1.009	kJ/kg K

Power drawn by the compressor	5.40	kW
Efficiency of the compressor motor	90	%

Calculate

a) Present delivery capacity of air conditioner (TR)

(3 Marks)

b) Power drawn per TR of refrigeration

(3 Marks)

c) Calculate the annual energy savings for 7200 hrs, if the UPS is relocated to a non-air-conditioned ventilated area. Assume energy cost Rs.8/kWh.

(4 Marks)

Ans

Capacity Installed	7.5	TR
Outdoor unit air velocity	6.1	m/s
Radius of the opening	0.30	m
Area of cross section (3.14 x 0.3^2)	0.283	m ²
Total Air flow (0.283 x 6.1)	1.72	m³/s
Density of the air	1.174	kg/m³
Mass of air, m (1.72x1.174)	2.02	kg/s
Ambient temperature, T1	305	°K
Air temperature, T2	313.5	°K
Difference in Temperature (T2-T1), (dT)	8.5	°K
Specific Heat at Constant pressure, cp	1.009	kJ/kgK
Heat Transfer (mxCpx(T2-T1))	17.32	kJ/s
Heat transfer per hour	62352	kJ/hr
	14917	kcal/Hr
Heat input from the compressor (5.4x0.9x860)	4180	kcal/Hr
Evaporator heat load (14949-4180)	10737	kcal/Hr
1 Tonne of refrigeration	3024	kCal/Hr
Effective TR	3.55	TR
Power drawn by the compressor	5.40	kW
power taken per TR of refrigeration	1.52	kW/TR

Heat Load generated by UPS in Conditioned Space							
	Input	Output			Heat Load		
Rating/ Location	Power (kW)	Power (kW)	(kW)	kCal/Sec	kCal/Hr	TR/hr	Total TR/day

40 kVA	On Load (16hrs)	11.94	8.61	3.33	0.80	2880	0.95	15.2
	No Load (8hrs)	1.16	0	1.16	0.28	1008	0.33	2.64
Total							17.84	

The savings that can be achieved by providing clean, cool and dust free environment for UPS operation is given below.

AC Load generated by UPS/ day = 17.84 TR

Power taken by AC to generate 17.82 TR at 1.52 kW/TR = 27.12 kW

Annual energy savings at 300 days of operation = 8136 kWh

Cost of power = Rs.8/kWh

Annual Cost Savings = Rs.65,088/-

L-5

One of the textile processing plants has installed two numbers of 6 MW gas turbines and also Heat Recovery Steam Generator (HRSG) to generate steam from the hot gases. The steam generated from HRSG is utilized for process steam requirement and also for 500 TR Vapour Absorption Machine (VAM). The VAM consumes 4.4 kg steam per TR and is operated at full load.

Due to increase in gas price the plant has stopped gas turbine operations and avails power supply from the grid. To meet the steam requirement the plant has installed two numbers of 10 TPH Agro Waste Boilers and steam is supplied to the process plant as well as to VAM machine. The average cost of steam is Rs.1200/- per ton from agro waste boiler. The plant operates for 7000 hours in a year.

The management is planning to replace the VAM chillers by electrical centrifugal chiller which will operate at 0.7 kW/TR.

Compare the annual operating costs of electrical chiller and VAM. The cost of grid power is Rs 6.12/kWh. Consider all the other auxiliary power remains same in both the cases.

Do you agree with the management decision of operating VAM machine for chilling requirements?

Ans

Capacity of VAM Machine = 500 TR Steam required/TR = 4.4 Kg/TR

Total Steam requirement = $500 \times 4.4 = 2200 \text{ Kg/hr} = 2.2 \text{ TPH}$

Cost of steam from Agro Boiler = 2.2 X 1200 = Rs 2640 / hr

Power consumed by electric chiller = 0.7 X 500 = 350 kW Cost of electricity = Rs 6.12/kWh

Operating cost of electric chiller = $350 \times 6.12 = \text{Rs } 2142$

Savings by Electric chiller = 2640- 2142 = Rs.498/ hr Annual operating savings = 7000 X 498 = Rs 34,86,000/-

Disagree with the management decision.

L-6	A distribution company has taken initiatives to reduce Aggregate Technical & Commercial (AT & C) loss in their network. The energy supplied, received and revenue details are given below:						
	Input energy = 60 MU						
	Metered Billed Energy = 43 MU						
	Average Billing = 3 MU						
	Amount Billed = Rs. 540 Million						
	Arrears collected = Rs. 80 Million						
	Amount received = Rs. 470 Million						
	a) Estimate the following: (each carries 2.5 Marks)						
	i) AT & C loss in % and revenue realized in Rs. /kWh						
	ii) Revenue loss per kwh and monthly loss, if the purchased energy cost is Rs. 8.10/						
	b) List five measures to reduce commercial loss in the network (5	5 Marks)					
	a) Billing efficiency = (43+3) /60 X 100 = 76.7 %						
Ans	S Collection efficiency = ((470-80)/540) X 100 = 72.2 %						
	AT&C Loss = 1- (Billing efficiency x Collection Efficiency) x 100						
	= 1- (0.767 x 0.722) X100 = 44.62 %						
	Revenue realised / $kwh = (470-80)/60 = Rs 6.5/kWh$						
	Revenue loss / kwh = Rs 8.10- 6.5 = Rs. 1.6/kWh						
	Monthly Revenue loss = 60 X 1.6 = Rs 96 Million or (Rs.9,60,00,000/-)						
	b) Few measures to reduce commercial losses in distribution system include:						
	Refer Guide Book No 3, Chapter 1, Page No 27						

----- End of Section - III -----

Marks: $50 \times 1 = 50$

Regn No:	
Name :	
(To be written by the candidate)	

18th NATIONAL CERTIFICATION EXAMINATION FOR JEBOY MANAGERS & ENERGY AUDITORS - Sontombor 3

ENERGY MANAGERS & ENERGY AUDITORS – September, 2017 PAPER – 3: ENERGY EFFICIENCY IN ELECTRICAL UTILITIES

Date: 24.09.2017 Timings: 09:30-12:30 HRS Duration: 3 HRS Max. Marks: 150

General instructions:

- Please check that this question paper contains 11 printed pages
- o Please check that this question paper contains 64 questions
- The question paper is divided into three sections
- o All questions in all three sections are compulsory
- o All parts of a question should be answered at one place

Section - I: OBJECTIVE TYPE

- i) Answer all 50 questions
- ii) Each question carries one mark
- iii) Please hatch the appropriate oval in the OMR answer sheet with Black Pen or HB pencil

	1.	An Industrial Consumer has a load pattern of 2000 kW, 0.8 lag for 12 hrs and 1000 kW unity power factor for 12 hrs. The load factor is:							
		a) 0.5							
		b) 0.75 c) 0.6							
		d) 0.2							
	2.	Which of the following is not likely to create h	narmonics in an electrical system?						
		a) soft startersc) uninterrupted power supply source (UPS)	b) variable frequency drivesd) induction motors						
	3.	Which of the following is an example of variable torque equipment?							
		a) centrifugal pump c) screw compressor	b) reciprocating compressor d) roots blower						
,	4.		3 phase rated induction motor, after decoupling rawing 3 A at no load. The current drawn by the						

	motor at no load	d is high because of			
	c) loose motor t	ter reading upply frequency terminal connections factor as the load i		e	
5.	-	tively during a comp	_		ding period of 5 seconds and 20 he air leakage in the compressed
	a) 125 cfm	b) 100 cfm	c) 200 cfm	d) none	e of the above
6.	The percentage 0.95 is		ution losses when	n tail end	power factor is raised from 0.8 to
	b) 15.8%				
	c) 71%				
	d) none of the a	nbove			
7.					essor capacity test will beigher than ambient air of $40~^{0}$ C.
	a) 0.727	b) 0.920	c) 0.954	d) ne	one of the above
8.	,	he temperature of ai			c humidity, dew point
8.	If we increase t temperature of a) increase	the temperature of ai air will	r without changing		
	If we increase t temperature of a) increase c) remain cons	the temperature of ai air will	r without changing b) decrease d) can't say	ng specifi	c humidity, dew point
9.	If we increase t temperature of a) increase c) remain cons	the temperature of ai air will	r without changing b) decrease d) can't say	ng specifi	
	If we increase t temperature of a) increase c) remain cons Which of the forwasher? a) Humidity rat b) Dry Bulb To c) Dry Bulb To	the temperature of ai air will	b) decrease d) can't say air when it is coo	ng specifi	c humidity, dew point
9.	If we increase t temperature of a) increase c) remain cons Which of the forwasher? a) Humidity rat b) Dry Bulb To c) Dry Bulb To d) Enthalpy of o	the temperature of air air will stant clio of the air decrease emp of air increases. outlet is air is less the pression refrigeration	b) decrease d) can't say air when it is coo	ng specifi bled throu	c humidity, dew point
9.	If we increase t temperature of a) increase c) remain cons Which of the forwasher? a) Humidity rat b) Dry Bulb Te c) Dry Bulb Te d) Enthalpy of o	the temperature of air air will stant clio of the air decrease emp of air increases. outlet is air is less the pression refrigeration	b) decrease d) can't say air when it is coo	ng specifi bled throu tlet air. mponent v	c humidity, dew point gh evaporation process in an air
9.	If we increase t temperature of a) increase c) remain cons Which of the forwasher? a) Humidity rat b) Dry Bulb To c) Dry Bulb To d) Enthalpy of o In a vapor comphase from vap a) compressor	the temperature of air air will stant clio of the air decrease emp of air decrease mp of air increases. outlet is air is less the pression refrigeration for to liquid is b) condenser pression refrigeration of the air decrease mp of air increases.	b) decrease d) can't say air when it is coo es. es. an enthalpy of in n system, the cor c) expansion	ng specifi bled throu llet air. mponent v	c humidity, dew point gh evaporation process in an air where the refrigerant changes its

12.	2. If 30,000 kcal of heat is removed from a room every hour then the refrigeration tonnage will be nearly equal to						
	a) 30 TR	b) 15 TR	c) 10 TR	d) 100 TR			
13.	In a no load test of:	of a 3-phase indu	ction motor, the measured	d power by the wattmeter consists			
		windage & friction	on loss ss, windage & friction los	SS			
14.	4. In an engine room 15 m long, 10 m wide and 4 m high, ventilation requirement in m ³ /hr for 20 air changes/hr is:						
	a) 30	b) 3000	c) 12000	d) none of the above			
15.	Which among the compressors ?	following is one	of the parameters used to	classify fans, blowers &			
	a) air flow	b) speed RPM	c) specific ratio	d) none of the above			
16.	The inner tube of	a L-type Pitot tu	abe facing the flow is mean	sures in the fan system			
	a) static pressurec) total pressure	,	velocity pressure all of the above				
17.			ed from 120 m ³ /hr to 100 ruction in impeller size?	m ³ /hr by trimming the impeller.			
	a) 83.3%	b) 16.7%	c) 50.0%	d) 33.3%			
18.	Increasing the suc	tion pipe diamete	er in a pumping system wil	11			
	a) reduce NPSHa c) decrease NPSH) increase NPSHa) increase NPSHr				
19.	If the speed of a re	eciprocating pum	p is reduced by 50 %, the	head			
	a) is reduced by 2 c) is reduced by 7		b) is reduced by 50% d) remains same				
20.	If temperature of	air increases, the	amount of water vapor rec	quired for complete saturation will			
	a) Increase	b) Decrease	c) not change	d) Can't say			
21.	Which of the followard Air receivers	owing is false?.					

	 a) reduce frequent of b) knock out some of c) increase compress d) act as reservoir to 	oil and moisture essor efficiency	•				
22.	. Which among the following inlet air conditions would result in the best cooling tower performance?						
	 a) air with lowest wet bulb temperature and high relative humidity b) air with lowest wet bulb temperature and low relative humidity c) air with same dry bulb and wet bulb temperature d) air with high dry bulb temperature and high moisture. 						
23.	As the 'approach' incre cooling tower:	ases while other pa	rameters remain cons	tant, the effectiveness of a			
	 a) increases b) remains unchanged c) decreases d) none of the above 						
24.	What is the reduction in is reduced by 10%?	distribution loss if	the current flowing the	hrough the distribution line			
	a)10%	b) 81%	c) 19%	d) None of the above			
25.	Which among the follow	ing types of fans is	predominantly used in	cooling towers ?			
	a) centrifugal fan	b) axial fan	c) radial fan	d) all the above			
26.	Which of the following t	type of lamps is most	t suitable for color cri	tical applications ?			
	a) halogen lamps c) CFLs	,	D lamps al halide lamps				
27.	Which of the following f	actors does not affect	et waste heat recovery	in a DG Set?			
	a) DG Set loading in kW c) operation period of De		b) DG Set reactive p d) back pressure of flo				

28.	The blow down requirement in m ³ /hr of a cooling tower for site Cycle of Concentration of 2.5 and approach of 4°C is:
	a) 10 b) 0.62
	b) 0.63 c) 1.6
	d) Data not sufficient to calculate
29.	Which of the following is not a climate zone as per ECBC classification?
29.	·
	a) Hot - dry b) Warm - humid c) Cold d) Cold humid
30.	COP of a single effect absorption refrigeration system is likely to be in the range of
	a) 0.6 to 0.7 b) 1 to 1.2 c) 1.5 to 2 d) 3.0 to 4.0
31.	Which of the following statements is not true regarding centrifugal pumps?
	a) Flow is zero at shut off head
	b) Maximum efficiency will be at design rated flow of the pump
	c) Head decreases with increase in flow
22	d) Power increases with throttling
32.	Which of the following is not true regarding system characteristic curve in a pumping system with large dynamic head?
	System curve represents a relationship between discharge and head loss in a system of pipes
	b) System curve is dependent on the pump characteristic curve
	c) The basic shape of system curve is parabolicd) System curve will start at zero flow and zero head if there is no static lift
22	
33.	In a DG set, the generator is generating 1000 kVA, at 0.7 PF. If the specific fuel consumption of this DG set is 0.25 lts/ kWh at that load, then how much fuel is consumed while delivering generated power for one hour.
	a) 230 litre
	b) 250 litre c) 175 litre
	d) none of the above
34.	The T2,T5,T8 and T12 fluorescent tube light are categorized based on
	a) diameter of the tube
	b) length of the tube
	c) both diameter and length of the tube

	d) power consumption
35.	For an air compressor with displacement of 100 CFM and system leakage of 10%, free air delivery is
	a) 111.11 CFM
	b) 90 CFM
	c) 100 CFM d) None of the above
26	
36.	The source of maximum harmonics among the following, in a plant power system is
	a) 100 CFL lamps of 11 W to 25 W
	b) 500 kW, 3 Phase, 415 V, 50 Hz resistance furnace
	c) 5 kVA UPS for computer system
	d) variable frequency drive for 225 kW motive load
37.	The lamp based on high frequency electromagnetic field from outside, exciting the mercury gas sealed in the bulb, to produce UV radiation and light is
	a) Induction lamp
	b) Fluorescent lamp
	c) Mercury vapour lamp
	d) Metal halide lamp
20	The combined power factor of a set of incandescent bulbs totaling 20 kW and two motors,
38.	
38.	each of 20 kW with power factor of 0.80 is
38.	each of 20 kW with power factor of 0.80 is
	each of 20 kW with power factor of 0.80 is a) 0.88 b) 0.90 c) 0.80 d) none of the above
39.	each of 20 kW with power factor of 0.80 is a) 0.88 b) 0.90 c) 0.80 d) none of the above
	each of 20 kW with power factor of 0.80 is a) 0.88 b) 0.90 c) 0.80 d) none of the above State which of the following statements is true?
	each of 20 kW with power factor of 0.80 is a) 0.88 b) 0.90 c) 0.80 d) none of the above
	each of 20 kW with power factor of 0.80 is a) 0.88 b) 0.90 c) 0.80 d) none of the above State which of the following statements is true? a) for a given fan operating at a constant temperature, the power input to fan increases by 4
	each of 20 kW with power factor of 0.80 is a) 0.88 b) 0.90 c) 0.80 d) none of the above State which of the following statements is true? a) for a given fan operating at a constant temperature, the power input to fan increases by 4 times when the fan speed becomes double b) for a given fan operating at a constant temperature, the power input to fan increases by 8 times when the fan speed becomes double
	each of 20 kW with power factor of 0.80 is a) 0.88 b) 0.90 c) 0.80 d) none of the above State which of the following statements is true? a) for a given fan operating at a constant temperature, the power input to fan increases by 4 times when the fan speed becomes double b) for a given fan operating at a constant temperature, the power input to fan increases by 8 times when the fan speed becomes double c) for a given fan operating at a constant flow rate, the power input increases as the air
	each of 20 kW with power factor of 0.80 is a) 0.88 b) 0.90 c) 0.80 d) none of the above State which of the following statements is true? a) for a given fan operating at a constant temperature, the power input to fan increases by 4 times when the fan speed becomes double b) for a given fan operating at a constant temperature, the power input to fan increases by 8 times when the fan speed becomes double c) for a given fan operating at a constant flow rate, the power input increases as the air temperature increases
	each of 20 kW with power factor of 0.80 is a) 0.88 b) 0.90 c) 0.80 d) none of the above State which of the following statements is true? a) for a given fan operating at a constant temperature, the power input to fan increases by 4 times when the fan speed becomes double b) for a given fan operating at a constant temperature, the power input to fan increases by 8 times when the fan speed becomes double c) for a given fan operating at a constant flow rate, the power input increases as the air
	 each of 20 kW with power factor of 0.80 is a) 0.88 b) 0.90 c) 0.80 d) none of the above State which of the following statements is true? a) for a given fan operating at a constant temperature, the power input to fan increases by 4 times when the fan speed becomes double b) for a given fan operating at a constant temperature, the power input to fan increases by 8 times when the fan speed becomes double c) for a given fan operating at a constant flow rate, the power input increases as the air temperature increases d) for a given fan operating at a constant static pressure rise, the flow rate reduces as the air temperature increases
39.	 each of 20 kW with power factor of 0.80 is a) 0.88 b) 0.90 c) 0.80 d) none of the above State which of the following statements is true? a) for a given fan operating at a constant temperature, the power input to fan increases by 4 times when the fan speed becomes double b) for a given fan operating at a constant temperature, the power input to fan increases by 8 times when the fan speed becomes double c) for a given fan operating at a constant flow rate, the power input increases as the air temperature increases d) for a given fan operating at a constant static pressure rise, the flow rate reduces as the air temperature increases

41.	In pumping systems	where static head	d is a high prop	ortion of t	he total, the appropriate solution
	is				
	a) install two or more pumps to operate in parallel				
	b) install two or more pumps to operate in seriesc) install two or more pumps to operate independently				
	· · · · · · · · · · · · · · · · · · ·	more pumps to of le frequency drive		aentiy	
	, , , , , , , , , , , , , , , , , , ,				
42.	The daily average p kVARh drawn is		5 and the ener	gy consum	ption is 2200 kWh. The average
	1000	1 \ 2215	\ 5 00.5	1) N.T.	C.1 1
	a) 1900	b) 2315	c) 722.5	d) None	of the above
43.	HVDS (High Voltage	ge Distribution Sy	ystem) is prefer	red to	
	.)] 4]	1	•		
	a) reduce technical b) improve voltage:		ion system		
	c) comply with regu	•			
	d) reduce energy bil	l for the end cons	umer		
44.	When evaporator te	mperature is incre	eased		
	a) refrigeration capa	•			
	b) refrigeration cap		ac como		
	c) specific power co d) power consumption		is same		
15			aimala in a fact	:11	
45.	Improving power fa	ctor at motor tern	ninais in a facto	ory will	
	a) increase active p	ower			
	b) release distribu		capacity		
	c) reduce contract of	lemand			
	d) increase motor e	fficiency			
46.	If the COP of a vape	our compression s	system is 3.5 ar	nd the moto	or draws a power of 10.8 kW at
	90% motor efficience	cy, the cooling eff	fect of vapour of	compressio	on system will be
		1) 25 01 11	\ 0.24	1 ***	
	a) 34 kW	b) 37.8 kW	c) 0.36	kW	d) none of the above
47.	A parameter that inc	dicates adequacy	of lighting for	a particular	application is
	a) installed load effi	cacv			
	b) installed power d	<u> </u>			
	c) lux	,			
1	İ				

	d) lumens		
48.	Which of the following is not an example of lighting controls?		
	a) dimmers		
	b) timers		
	c) photosensors		
	d) daylight harvesting		
49.	. Which of the following flow controls in a fan system will change the system resistance curve:		
	 a) Inlet guide vane b) speed change with variable frequency drive d) discharge damper 		
50.	When the dew point temperature is equal to the air temperature then the relative humidity is		
	 a) 0% b) 50% c) 100% d) Unpredictable 		

..... End of Section – I

8

Marks: $8 \times 5 = 40$

Section - II: SHORT DESCRIPTIVE QUESTIONS

- (i) Answer all <u>Eight</u> questions(ii) Each question carries <u>Five</u> marks

S-1	Determine the discharge pipe inner diameter following parameters.	size (in	mm) for compressed air system,	having
	 Compressed Air Flow at NTP (FAD) Discharge Air Pressure Discharge Air Temperature Air Velocity Atmospheric Pressure 	= = = =	1000 Nm ³ /hr 7 bar(g) 35 ° C 6 m/s. 1.013 bar	
Ans	Actual Condition	VS	NTP Condition	
	$\begin{array}{ccc} \bullet & P_2 \times V_2 / T_2 \\ \bullet & (1.013 + 7) \times V_2 / (273 + 35) \end{array}$	= =	$\begin{array}{c} P_1 \times V_1 / T_1 \\ 1.013 \times 1000 / 273 \end{array}$	
	V1, actual flow rate	=	142.6 m ³ /hr	
		=	$0.0396 \text{ m}^3/\text{s}$ (3 Ma	arks)
	 Flow rate (m³/s) Area, in mtr² A = π (d_i²/4) Pipe, in mm = d_i 		Area, in mtr ² x Velocity (m/s) Flow rate (m ³ /s) / Velocity (m/s) 0.0396 / 6 = 0.0066 m ² 0.0066 m ² 0.092 m = 92 mm (2 Masay 100 mm	
S-2	List five energy saving measures in a cen system.	itralize	d chilled water based air condi	tioning
Ans	 Insulate all cold lines / vessels using heat gains. 	g econo	omic insulation thickness to mi	nimize
	Optimize air conditioning volumes by segregation of critical areas for air conditioning volumes by segregation of critical areas.			ng and
	 Minimize the air conditioning loads painting, efficient lighting, pre-coolin etc. 			
	Optimal thermo-static setting of temp	eratur	e of air conditioned spaces.	
	Minimize part load operations by n adopt variable speed drives for varying			n line;
	Note : Ar	ny othe	er relevant point also to be cons	sidered

1			(Each point	carries one ma	5 marks rk)
S-3	0.01 kg per kg 0.1 kg/s. If we	dry air, mixes assume proper	with a second	stream of superh	d with a specific humidity of eated water vapor, flowing at ndensation, then what will be
Ans	Humidity ratio	of final stream	m,		
		$\mathbf{M}_1\mathbf{H}_1 + \mathbf{M}_2$	H_2 (0.01)	(x10.1) + (0.1x1)	
	H =		(10.		= 0.02 kg per kg of dry air
	Dry air (can al	so be calculate	d as) = [10.1 kg	g/s — (moisture i.c	e. 10.1 x 0.01)]5 marks
	Mass of moist air = 10.1 kg/s . Specific humidity is = 0.01 kg/ kg dry air Amount of dry air in moist air can be found out as follows: Let X be the amount of dry air, then by mass balance $X + X * (Specific humidity) = 10.1 kg/s$ $X + X * (0.01) = 10.1 kg/s$ On solving, we get X=10 kg/s Now, Moisture in moist air is 0.1 kg/s Superheated steam = 0.1 kg/s Humidity ratio of final steam = $M_1H_1 + M_2H_2 \qquad (0.01x10) + (0.1x1)$ $H =$)
1	dmy oir				
	dry air	Dry ai	. ()	10)	5 marks
S-4	A pump is filling	ng water in to a	a rectangular over	erhead tank of 5	m x 4 m with a height of 8 m. und. The following additional
S-4	A pump is filling. The inlet pipe to data is collected. Pump solution Overhele. Power of Motor of Time ta	ng water in to a the tank is loc	a rectangular over cated at height of white white mp to fill the	erhead tank of 5 f f 20 m above gro : 3 m below pur	m x 4 m with a height of 8 m. und. The following additional mp level he bottom of the tank
S-4	A pump is filling. The inlet pipe to data is collected. Pump solution Overhele. Power of Motor of Time ta	ng water in to a the tank is loc tion ad tank overflo drawn by motor efficiency η ken by the pun ad tank upto ov	a rectangular over cated at height of white white mp to fill the	erhead tank of 5 ff 20 m above groes: 3 m below pursions: 7.5 m from the control of 5.5 kW in 192%	m x 4 m with a height of 8 m. und. The following additional mp level he bottom of the tank

 $= Q (m^3/s) x total head (m) x 1000 x 9.81 /1000$ Hydraulic power

 $= (50/3600) \times (20 - (-3)) \times 1000 \times 9.81/1000$

Hydraulic power = 3.13 kW

.....2.5 marks

.....1 mark

Power input to pump = 5.5×0.92 = 5.06 kWPump efficiency = 3.13/5.06

= 61.9%

S-5 The operating boiler load and associated Induced-draft fan power consumption of a

Boiler loading	Damper position	Operating hours a day	Fan motor power (with damper operation) (kW)
80%	Position # 1	4	31
70%	Position # 2	12	29
60%	Position # 3	8	26

boiler is given below.

The fan consumes 35 kW at 100% boiler loading with damper in full open condition.

Estimate the daily energy savings that can be achieved if the damper is replaced by a VFD for induced draft fan to meet the desired requirements.

Assume that the air requirement is proportional to boiler loading.

Ans	Savings can be estimated as follows:					
	Fan	Operating	Fan motor	Fan motor	Power	Energy
	Flow	hours a	power with	with VFD	savings	savings
	(same	day	damper	(kW)	(kW)	(kWh)
	as boile	_	(kW)	(KVV)	(KVV)	(KVVII)
	loading		(KVV)			
	(%)	,				
	A	В	С	$D = A^3 \times 35$	E = C-D	F = B x E
	80	4	31	17.9	13.1	52.32
	70	12	29	12	17	203.94
	60	8	26	7.6	18.4	147.52
	Total D	aily Savings	l	l		403.78
						5 marks
S-6	a) Votra b) Us an c) Op fac d)	d stops per hou perating a highly ctor of	starter is appro- r. under loaded in the ratio of dissonance water	priate in case on motor in star motor in star motor in star motor in colved solids in colve	f high number ode reduces v	r of motor starts voltage by a ter to the
Ans	a) On load tap changer (OLTC) b) Soft starter c) √3 (i.e.square root of three) d) Cycles of Concentration (COC) e) Lumens					
S-7	a full load	efficiency of 87	7.6%. The mea	sured operating	g motor termi	uction motor has nal voltages in a hase supply are

137 Amp, 132 Amp & 137 Amp.	Estimate the additional temperature rise of motor,
due to unbalanced voltage supply	

i) Additional temperature rise:

Phase	V	Deviation from mean voltage
R	415	-2.67
Υ	418	0.33
В	420	2.33
Mean	417.67	0

Voltage unbalance = Maximum deviation from mean/mean voltage

= 2.67*100/417.67 = 0.639% -----3

-----2 Marks

Marks

Additional temperature rise = 2 X (%voltage unbalance)²

$$= 2 \times (0.639)^2$$

= 0.8166%

S-8

Briefly explain any three different methods of flow control for fans

Ans **Pulley Change:**

When a fan flow change is required on a permanent basis, and the existing fan can handle the change in capacity, the volume change can be achieved with a speed change. The simplest way to change the speed permanently is with a pulley change. For this, the fan must be driven by a motor through a v-belt system.

Damper Control:

Dampers provide a means of changing air volume by adding or removing system resistance. This resistance forces the fan to move up or down along its characteristic curve, generating more or less air without changing fan speed.

Inlet Guide Vane:

Guide vanes are curved sections that lay against the inlet of the fan. Guide vanes pre-swirl the air entering the fan housing. This changes the angle at which the air is presented to the fan blades, which, in turn, changes the characteristics of the fan curve. Guide vanes are energy efficient for modest flow reductions – from 100 percent flow to about 80 percent. Below 80 percent flow, energy efficiency drops sharply.

Variable Speed Drive:

Variable speed operation involves reducing the speed of the fan to meet reduced flow

requirements. Fan performance can be predicted at different speeds using the fan laws. Since power input to the fan changes as the cube of the flow, this will usually be the most efficient form of capacity control.
(Any of the above three to be considered)
End of Section - II

Marks: $6 \times 10 = 60$

Section - III: LONG DESCRIPTIVE QUESTIONS

- Answer all Six questions
- Each question carries Ten marks (ii)
- L-1 It is required to choose a transformer to cater to a load which varies over a 24 hour period in the following manner:

500 kVA for 6 hours, 1000 kVA for 6 hours and 1500 kVA for 12 hours.

Quotations have been received for two transformers, each rated at 1,500 kVA. Transformer-1 has an iron loss of 2.7 kW and a full load copper loss of 18.1 kW, while Transformer-2 has an iron loss of 3.2 kW and a full-load copper loss of 19.8 kW.

- (i) Calculate the annual cost of losses for each transformer at 365 days of operation if electrical energy cost is Rs. 6 per kWh.
- (ii) If the transformer-1 is to be purchased at an additional cost of Rs.25,000 over transformer-2, how would you justify it to the finance department?

Cost of Losses: Ans

Transformer 1

Energy loss per day due to iron loss = 24×2.7 = 64.8 kWhEnergy loss per day due to copper loss = $\left[\left(\frac{500}{1,500}\right)^2 \times 18.1 \times 6\right] + \left[\left(\frac{1,000}{1,500}\right)^2 \times 18.1 \times 6\right] + \left[\left(\frac{1,000}{1,500}\right)^2 \times 18.1 \times 6\right]$ $\left[\left(\frac{1,500}{1,500}\right)^2 \times 18.1 \times 12\right]$ = (12.1) + (48.3) + (217.2) = 277.6 kWhTotal energy loss per annum $= (64.8 + 277.6) \times 365 = 1,24,976 \text{ kWh}$ Annual cost of energy losses $= \text{Rs } 6 \times 124976 \text{ kWh} = \text{Rs. } 7,49,856...$ = Rs. 7,49,856..... (3 Marks)

Transformer 2

Energy loss per day due to iron loss = 24×3.2 = 76.8 kWhEnergy loss per day due to copper loss = $\left[\left(\frac{500}{1,500} \right)^2 \times 19.8 \times 6 \right]_{+} \left[\left(\frac{1,000}{1,500} \right)^2 \times 19.8 \times 6 \right]$ $+\left[\left(\frac{1,500}{1,500}\right)^2 \times 19.8 \times 12\right]$ = (13.2) + (52.3) + (237.6) = 303 kWhTotal energy loss per annum $= (76.8 + 303) \times 365$ = 1,38,663 kWhAnnual cost of energy losses $= \text{Rs.} 6 \times 1,38,663$ = Rs. 8,31,978...

(3 Marks)

(ii)

The capital cost of transformer - 1 is Rs.25,000 more than that of transformer - 2

Annual saving in energy cost due to losses = (Rs 8,31,978 - Rs 7,49,856) = Rs 82,122

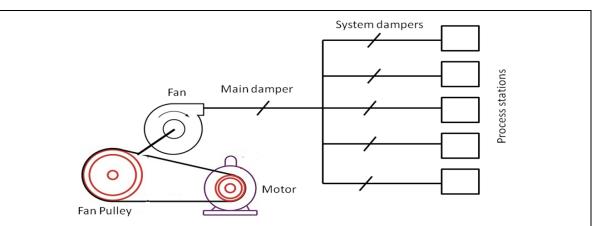
Pay Back of additional investment = (25000 / 82,122) = around 4 months = 0.3 Yrs

4 Marks

- L-2 a) In an air-handling unit (AHU), the filter area is 1.5 m² while air velocity is 2.2 m/s. The inlet air has an enthalpy of 67 kJ/kg. At the outlet of AHU, air has an enthalpy of 56 kJ/kg. The density of air of 1.3 kg/m³. Estimate the TR of the air-handling unit?
 - b) List out any five energy conservation measures for energy use in buildings

Ans a) TR of AHU = (Enthalpy difference x density x area x velocity x 3600)

/ (4.187 x 3024)


 $= (67-56) \times 1.3 \times 1.5 \times 2.2 \times 3600 / (4.187 \times 3024)$

= 13.41 TR......2.5 marks

b)

- 1. Weather-stripping of Windows and Doors: Minimize exfiltration of cool air and infiltration of warm air through leaky windows and doors by incorporating effective means of weather stripping
- 2. Stripping. Self-closing doors should also be provided where heavy traffic of people is anticipated.
- 3. Temperature and Humidity Setting: Ensure human comfort by setting the temperature to between 23oC and 25oC and the relative humidity between 55% to 65%.
- 4. Chilled Water Leaving Temperature: Ensure higher chiller energy efficiency by maintaining the chilled water leaving temperature at or above 70 C. As a rule of thumb, the efficiency of a centrifugal chiller increases by about 2¼ % for every 10 C rise in the chilled water leaving temperature.
- 5. Chilled Water Pipes and Air Ducts: Ensure that the insulation of the chilled water pipes and ducting system is maintained in good condition. This helps to prevent heat gain from the surroundings.
- 6. Chiller Condenser Tubes: Ensure that mechanical cleaning of the tubes is carried out at least once every six months. Fouling in the condenser tubes in the form of slime and scales reduces the heat transfer of the condenser tubes and thereby reducing the energy efficiency of the chiller.
- 7. Cooling Towers: Ensure that the cooling towers are clean to allow for maximum heat transfer so that the temperature of the water returning to the condenser is less than or equal to the ambient temperature.
- 8. Air Handling Unit Fan Speed: Install devices such as frequency converters to vary the fan speed. This will reduce the energy consumption of the fan motor by as much as 15%.
- 9. Air Filter Condition: Maintain the filter in a clean condition. This will improve the heat transfer between air and chilled water and correspondingly reduce the energy consumption.

	Note: Any other relevant point may also be considered
	(each point carries 1.5 marks and maximum five points has to be considered)
L-3	Fill in the blanks for the following:
	1. The dry bulb temperature is 30°C and the wet bulb temperature is 30°C. The relative humidity is%.
	2. Cavitations may occur in a pump when the local static pressure in a fluid reaches a level below the pressure of the liquid at the actual temperature.
	3. As the "Approach" decreases, the other parameters remaining constant, the effectiveness of cooling tower will
	4. The ratio of luminous flux emitted by a lamp to the power consumed by the lamp is called
	5. A centrifugal pump raises water to a height of 12 meter If the same pump handles brine with specific gravity of 1.2, the height to which the brine will be raised ism.
	6. Harmonics in electricity supply are multiples of the frequency.
	7. A motor which can conveniently be operated at lagging as well as leading power factors is the motor.
	8. As per Energy Conservation Building Code, the Effective Aperture (EA) is, given that Window Wall Ratio (WWR) is 0.40 and Visible Light Transmittance (VLT) is 0.25.
	9. In an amorphous core distribution transformer, loss is less than a conventional transformer
	10. In case of centrifugal pumps, impeller diameter changes are generally limited to reducing the diameter to about% of maximum size.
Ans	 RH = 100% Vapor Increases Luminous efficacy 12 meter or the same
	6. Fundamental or 50 Hz
	7. Synchronous8. 0.10
	9. No load (other correct answers could be: fixed, iron, total) 10. 75% (or 80%)
	10 marks
L-4	(Each one question carries one mark) A belt-driven centrifugal fan supplies air to a series of process stations as shown in the
L 7	figure below:

While doing an air balance check on the system, the damper on the main duct and all system dampers had to be partially closed to reduce air flow to the design values.

Energy auditor has recommended that fan power can be saved by fully opening the main damper and reducing the fan speed by changing the fan pulley diameter.

The following initial conditions were measured on the main air supply system:

Air Volume Flow Rate : 68,400 m³/hr
 Fan Differential Static Pressure : 112 mmWC
 Pressure differential across main damper : 17 mmWC

The following initial conditions were measured on the air supply fan and motor:

Motor input power
 Supply Fan Speed
 Motor Speed
 Fan pulley Diameter
 Motor pulley Diameter
 26.8 kW
 600 rpm
 1,460 rpm
 560 mm
 230 mm

Calculate -:

- (a) The annual energy savings considering 6000 hours of operation per year.
- (b) The new fan pulley diameter.

Ans

- Fan Flow = (68400 / 3600) = $19 \text{ m}^3 / \text{sec}$
- The input fan motor power in case-1 (W₁) = 26.8 kW
- Theoretical air power with damper in original partially-closed position $(W_{Th1}) = (m^3/s) \times (mmWC) / 102$

 $= (19 \times 112) / (102) = 20.86 \text{ kW}$

.....2 marks

- Theoretical air power with damper in new fully-open position would be position (W_{Th2}) = (m^3/s) x (mmWC) / 102

 $= (19 \times 95) / 102$ = 17.7 kW.....2 marks Reduction in differential static pressure across the fan with the main damper fully open = (112-17)= 95 mmWC The input fan motor power in case-2 (W₂) is estimated by proportionality using theoretical fan powers of the fan in the two cases i.e. $(W_1/W_2) = (W_{Th1}/W_{Th2})$ Fan motor input in case-2 (W₂) $= W_1 \times (W_{Th1} / W_{Th2})$ $= 26.8 \times (17.7/20.86) = 22.7 \text{ kW}$2 marks **Annual Energy saving: Annual Energy saving** = Power Reduction x Op. Hours $= (26.8 \text{ kW} - 22.7 \text{ kW}) \times 6000 \text{ hrs}$ = 24600 kWh.....2 marks Fan pulley diameter change for reduced speed: The governing equation for reduced fan speed (N₂) to supply equal air flow with reduced static pressure differential $(N_1/N_2) = (p_1/p_2)^{0.5}$ $= N_1 \times (p_2/p_1)^{0.5}$ Therefore N₂ $=600 \times (95/112)^{0.5}$ = 553 RPM The governing equation for fan pulley diameter change is $: N_1D_1 = N_2D_2$

(where: N is the speed in rpm and

D is the pulley diameter)

Therefore D_2 = $(N_1/N_2) \times D_1$

 $= (600 / 553) \times 560 = 608 \text{ mm}$

.....2 marks

a) A 3-Phase, 50 kW rated Induction motor drawing 44 kW in a manufacturing industry has a power factor of 0.75 lagging. What size of capacitor in kVAr in each phase is required to improve the operating power factor to 0.96?

What is the reduction in current and kVA due to capacitor installation at operating

	voltage of 415 V ?						
	b) Lis	st five energy losses ir	n an induction r	notor			
Ans	a)	Motor input	= P		= 44kW		
		Original P.F	= Cosθ	1	= 0.75		
		Final P.F	= Cosθ	2	= 0.96		
		θ_1	= Cos ⁻¹ (0.75)	= 41°.41;		
		Tan θ₁	= Tan (41°	.41)	= 0.88		
		θ_2	$= Cos^{-1}(0.96)$	6)	= 16°.26;		
		Tan θ_2	= Tan (16°	.26)	= 0.29		
	Required Capacitor kVAR to improve P.F from 0.75 to 0.96 Required Capacitor kVAR = P (Tan θ_1 – Tan θ_2) = 44 kW (0.88 – 0.29) = 25.96 kVAR						
	Rating of Capacitors connected in each Phase 25.96/3 = 8.65 kVAR						
		Current drawn at 0.	75 PF	= 44	/ √3 x 0.415 x 0.75	= 81.6 A	
		Current drawn at 0.96 PF		$= 44 / \sqrt{3} \times 0.415 \times 0.96$		= 63.76 A	
	Reduction in current drawn		ent drawn	= 81.6 - 63.76		= 17.84 A	
		Initial kVA at 0.75 P	PF	= 44	1/0.75	= 58.67 kVA	
		kVA at 0.96 PF		= 44	/ 0.96	= 45.83 kVA	
		Reduction in kVA		= 58	3.67 – 45.83	= 12.84 kVA 2.5 marks	
	b) 1. Iron 2. Stator I ² R 3. Rotor I ² R 4.Friction and windage 5. Stray load						
L-6	Write short notes on						
	i) Ice Bank System in refrigeration ii) Vapour Absorption Refrigeration System iii) Harmonics in electrical system and its impacts						

Ans

(i) (Page 136 book 3)

Ice Bank Systems:

- Ice Bank System is a proven technology that has been utilized for decades
 Thermal energy storage takes advantage of low cost, off-peak electricity, produced
 more efficiently throughout the night, to create and store cooling energy for use
 when electricity tariffs are higher, typically during the day.
- The essential element for either full- or partial- storage configurations are thermalenergy storage tanks.

How Ice Bank Works?

During off-peak night time hours, the chiller charges the ICEBANK tanks for use during the next day's cooling.

The lowest possible average load is obtained by extending the chiller hours of operation.

.....3.33 marks

(ii) (Page 30 book 3)

Vapour Absorption Refrigeration System

- The absorption chiller is a machine, which produces chilled water by using heat such as steam, hot water, gas, oil etc.
- Chilled water is produced by the principle that liquid (refrigerant), which evaporates at low temperature, absorbs heat from surrounding when it evaporates.
- Pure water is used as refrigerant and lithium bromide solution is used as absorbent
- Heat for the vapour absorption refrigeration system can be provided by waste heat extracted from process, diesel generator sets etc. Absorption systems require electricity to run pumps only.
- Depending on the temperature required and the power cost, it may even by economical to generate heat / steam to operate the absorption system.

Features of VAR systems

- Li-Br-water absorption refrigeration systems have a Coefficient of Performance (COP) in the range of 0.65 - 0.70 and can provide chilled water at 6.7 °C with a cooling water temperature of 30 °C.
- Systems capable of providing chilled water at 3 °C are also available. Ammonia
 based systems operate at above atmospheric pressures and are capable of low
 temperature operation (below 0°C).
- Absorption machines of capacities in the range of 10-1500 tons are available.
- Although the initial cost of absorption system is higher than compression system, operational cost is much lower-if waste heat is used

.....3.33 marks

(iii) (Page 114 book 3)

Harmonics in electrical system and its impacts

- Harmonics are multiples of the fundamental frequency of an electrical power system.
- If, for example, the fundamental frequency is 50 Hz, then the 5th harmonic is five times that frequency, or 250 Hz.
- Likewise, the 7th harmonic is seven times the fundamental or 350 Hz, and so on

for higher order harmonics

Some of the Harmonic problems are

- 1. Blinking of Incandescent Lights
- 2. Capacitor Failure
- 3. Conductor Failure
- 4. Flickering of Fluorescent Lights
- 5. Motor Failures (overheating)
- 6. Transformer Failures

.....3.33 marks

----- End of Section - III -----

Regn No:):				
Name :					
(To be written b	y the candidate)				

17th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS – September, 2016

PAPER - 3: Energy Efficiency in Electrical Utilities

General instructions:

- Please check that this question paper contains 8 printed pages
- Please check that this question paper contains 64 questions
- The question paper is divided into three sections
- All questions in all three sections are compulsory
- All parts of a question should be answered at one place

Section – I: OBJECTIVE TYPE

- Which of the following is the most comfortable conditions for an office room?
 DBT = Dry bulb temperature, and RH = Relative humidity
 - a) 20°C DBT and 80% RH
 - b) 26°C DBT and 100% RH
 - c) 15°C DBT and 30% RH
 - d) 25°C DBT and 55% RH
- 2. Energy Star Label Rating scheme for Fluorescent lamp is based on:
 - a) Lumens per Watt at 100, 2000 and 3500 hours of use
 - b) End of Lamp Life in terms of burring hours
 - c) Lumen depreciation at 2000 hours
 - d) Color Rendering Index
- 3. The effect of increasing the air gap in an induction motor will increase:
 - a) power factor
 - b) speed
 - c) capacity
 - d) magnetizing current
- 4. The formation of frost on cooling coils in a refrigerator:
 - a) improves C.O.P. of the system
 - b) increases heat transfer
 - c) reduces power consumption

d) increases power consumption

- 5. In a refrigeration system, the expansion device is connected between the
 - a. Compressor and condenser
 - b. Condenser and receiver
 - c. Condenser and evaporator
 - d. Evaporator and compressor
- 6. Which of the following is wrong with respect to Color Rendering Index (CRI)?
 - a) The CRI is expressed in a relative scale ranging from 0 100
 - b) CRI indicates how perceived colors match actual colors
 - c) CRI of Sodium Vapour lamp is much higher than that of a normal Incandescent Lamp
 - d) The higher the color rendering index, the less color shift or distortion occurs
- 7. Which of the following is wrong with reference to heat rate of a coal fired thermal power plant ?
 - a) Heat rate indicates the overall energy efficiency of a power plant
 - b) When calculating plant heat rate, the energy input to the system is GCV of the fuel
 - c) Lower the heat rate the better
 - d) 860 kCal per kWh is practically achievable
- 8. Installing larger diameter pipe in pumping system results in reduction in:
 - a) Static head
 - b) Dynamic head
 - c) Both (a) and (b)
 - d) None of the above
- 9. In electrical power system, transmission efficiency increases as
 - a) both voltage and power factor increase
 - b) both voltage and power factor decrease
 - c) voltage increases but power factor decreases
 - d) voltage decreases but power factor increases.
- 10. Which of the following is wrong statement with reference to LED lamps?
 - a) LED lamps are as energy efficient as CFL bulbs or better.
 - b) LED lampas are more durable than CFLs
 - c) LED lamps has no hazardous material like mercury
 - d) LED lamps are not suitable for Street Lighting purpose
- 11. In no load test of a poly-phase induction motor, the measured power by the wattmeter consists of:
 - a) core loss
 - b) copper loss
 - c) core loss, windage & friction loss
 - d) stator copper loss, iron loss, windage & friction loss

12.	A 10 MVA generator has power factor 0.86 lagging. The reactive power produced will be
	a) 10 MVAr b) 8 MVAr
	c) 5 MVAr
	d) 1.34 MVAr.
13.	The no-load loss and copper loss of a 500 kVA transformer is 900 watts and 6400 watts respectively. What is the total loss at 50% of transformer loading?
	a) 4100 watts
	b) 6850 watts c) 2500 watts
	d) 3650 watts
14.	Kg of moisture / kg of dry air is defined as
	a) Absolute humidityb) Relative humidity
	c) Variable humidity
	d) Dew Point
15.	The basic function of an air dryer in a compressor is to
	a) Prevent dust from entering the compressor
	b) Remove moisture before the intercooler
	c) Remove moisture in compressor suctiond) Remove moisture at the downstream of the after-cooler
	<u>, </u>
16.	The term "cooling range" in a cooling tower refers to the difference in the temperature of
	a) dry bulb and wet bulb
	b) hot water entering the tower and the wet bulb temperature of the surrounding air.c) cold water leaving the tower and the wet bulb temperature of the surrounding air.
	d) hot water entering the tower and the cooled water leaving the tower.
17.	The distinction between fans and blowers is based on
	a) impeller diameterb) specific ratio
	c) speed
	d) volume delivered
18.	A better indicator for cooling tower performance is
	a) Heat load in tower
	b) Range
	c) RH of air leaving cooling towerd) Approach
10	,
19.	As per the building area method given in Energy Conservation Building Code (ECBC) compute the lighting power allowance; given that : the allowed LPD is 12 watt per square meter and enclosed office area is 500 square meter

	a) 6 kW b) 4.16 kW c) 6 W
	d) 4.16 W
20.	The power factor of a synchronous motor
	 a) Improves with increase in excitation and may even become leading at high excitations b) Decreases with increase in excitation c) Is independent of its excitation
21.	A 4 pole 50 Hz induction motor is running at 1470 rpm. What is the slip value?
	a) 0.2 b) 0.02 c) 0.04 d) 0.4
22.	As per Energy Conservation Building Code compute the Effective Aperture (EA); given that Window Wall Ratio (WWR) is 0.40 and Visible Light Transmittance(VLT) is 0.25 a) 0.10 b) 0.65 c) 0.33 d) 0.15
23.	Increasing the impeller diameter in a pump a. Increases the flow b. decreases the head c. decreases the power d. all of the above
24.	The percentage reduction in distribution loses when tail end power factor is raised from 0.8 to 0.95 is: a) 29% b) 15.8% c) 71% d) 84%
25.	In a Three Phase Transformer, the secondary side line current is 139.1A, and secondary voltage is 415V. The rating of the transformer would be a. 50 kVA b. 150 kVA c. 100 kVA d. 63 kVA
26.	Power factor is highest in case of a. Sodium vapour lamps b. Mercury vapour lamps

	-			
	c. Tube Lights			
	d. Incandescent lamps			
27.	27. Shunt capacitors connection is norm a. Distribution Voltage impro b. Power factor improvemen c. Both a and b . d. None of these	ovement.	or:	
28.	28. A company installed a new 100 kVA it is operating at 93 kVAr. The reason	=	acitor but the power analyzer indicates	s that
	a. Operation is at low load			
	b. Higher Voltage at termina	als		
	C. Lower voltage at termin	als		
	d. None of the above			
29.	29. The kVA reduction by improving the 0.85 to 0.95 is a) 40 b) 49	power factor of c) 72	of a plant operating at 400 kW load from d) None of the above	n
30.	, ,	,	end Voltage of 9.8 kV, the percentage	
50.	regulation works out to: a) 0.80 b) 8.16	c) 7.55	d) None of these.	,
31.	31. Which of the following can be attribu a) Lengthy Low Voltage Lines c) Faulty consumer service meters	b) Low	rcial Loss in Electrical Distribution Sys Load side power factor ndersized conductors	tem?
32.	32. An Induction motor rated 15 kW and	90 % efficienc	:y, at full load will:	
	a) Draw 15 kW b) Draw 13.5 kW	c) Deliver 16	6.66 kW d) Deliver 15 kW	
33.	 A 50 hp motor with a full load effici input. The percent Motor Load is 	ency of 90 per	rcent was found to be operating at 2	5 kW
	a) 75% b) 67%	c) 60%	d) 25%	
34.			nnected to a 300 kVA alternator with Volts and 0.76 power factor is conne	
	a) 52% b) 74.51%	c) 55.4 %	d) None of the above	
35.	 35. Which of the following devices do not a. Electric Motors b. Filament Lamp c. Switch Mode power supply of 		harmonics?	

	d. Electromagne	tic ballasts		
36.	At which of the folloconsume maximum		ressures, the sa	ame reciprocating air compressor will
	a) 3 bar	b) 5 kgf/cm ²	c) 90 psi	d) 500 kPa
37.				er hour diesel oil. If the specific fuel at load, what is the kVA loading of the
	a) 212 kVA	b) 262.5 kVA	c) 170 kVA	d) None of these.
38.	If EER of One Ton S	plit AC unit is 3.51	, what is its pow	ver rating?
	a) 1.0 kWb) 1.5 kWc) 0.8 kWd) 2.0 kW			
39.	As per the Inverse Sq distance?	uare Law of illumi	ination what will	be the illuminance at half the
	a) 50%	b) 4 times	c) double	d)No change
40.	-	: 35°C temperature sure the air densi	•	heric pressure. It is given that at one 2041 kg/m ³
	a) 1.1455	b) 1.2657	c) 1.2024	d) none of the above
41.	A spark ignition engin	e is used for firing	which type of fu	uels:
	a) high speed dieb) light diesel oilc) natural gasd) furnace oil	esel		
42.	The blow down require CoC of 3 is	rement in m³/hr of	a cooling tower	r with evaporation rate of 16 m ³ /hr and
	a) 4	b) 2	c) 8	d) 16
43.	Which Loss in a District its rated capacity a) core loss b) copper loc c) hysteresis d) magnetic f	? ss loss	er is predominar	nt if the transformer is loaded to75% of

44.	Which of the following power plants has the highest efficiency				
	a. Combined cycle gas turbine				
	b.	Diesel Engine			
	C.	Conventional coa	l plants		
	d.	Open cycle Gas	Γurbine		
45.				e supply is 1.5 %. i to voltage unbalan	If the motor is operating at 100 °C, the ce is
	a.	4.5	b. 9	c. 0	d none of the above
46.	Which	of the following ca	innot be cont	rolled by automation	power factor controllers
	a)	KW	b) voltage	c) Power factor	d) KiloVAr
47.	The pa	arameter used in S	tar labeling o	of air conditioner is	
	a.	COP	b. EER	c. KW/TR	d. EPI
48.	The re	frigeration load in	TR when 30 i	m ³ /hr of water is co	poled from a 14 ° C to 6.5 ° C is about
	a)	74.4	b) 64.5	c) 261.6	d) none of the above
49.	In a lith	nium bromide abso	orption refrige	eration system	
	a.	lithium bromide is	used as a re	efrigerant and wate	r as an absorbent
	b.	water is used as	a refrigeran	nt and lithium bro	mide as an absorbent
	C.	ammonia is used	as a refrigera	ant and lithium bro	mide as an absorbent
	d.	none of these			
50.	A good which			device manufacturoblem while	urer will take precautions to prevent DG set is in operation
	a) vol	tage unbalance or	generator	b) Excessi	ve back pressure on engine
	c) ex	cessive steam gen	eration	d) turbulend	ce in exhaust gases

..... End of Section – I

Section - II: SHORT DESCRIPTIVE QUESTIONS

S-1	a. The rated compressor capacity is 15 m³/min. Evaluate if there is any capacity
	de-rating using the air-receiver tank filling method conducted at shop floor.
	The relevant data is given below.

Volume of Air receiver including pipe and cooler = 9 m³

Initial Pressure $= 0.5 \text{ kg/cm}^2$ Final Pressure $= 7.0 \text{ kg/ cm}^2$ Atmosphere pressure $= 1.026 \text{ kg/ cm}^2$ Time taken to build up the pressure = 5 minutes

b. What is the deficiency in this calculation and how can it be corrected?.

Ans a. Compressor output from tank filling method

= $[(7.0-0.5) \times 9/ (1.026 \times 5)] = 11.40 \text{ m}^3/\text{min}$ = $15-11.40 = 3.60 \text{ m}^3/\text{min}$

Capacity shortfall = $15-11.40 = 3.60 \text{ m}^3/\text{min}$, i.e., (3.60/15)x100 = 24% capacity de-rating

b. The above calculation assumes the compression is isothermal. It can be corrected by introducing the temperature correction factor: $(273+T_2)/(273+T_1)$ where T_1 is suction Temperature and T_2 is receiver temperature.

S-2 State three advantages of improvement of Power Factor at Load side. Power Factor at the load side is 0.75 and average minimum load is 100 kW. What is the kVAr rating of capacitor to improve the Power Factor at the load side to 0.95?

Ans Advantages of Power Factor improvement.

- Reduced kVA (Maximum demand) charges in utility bill
- Reduced distribution losses (KWH) within the plant network due to reduced current
- Better voltage at motor terminals and improved performance of motors
- Reduction in size of transformers
- Avoidance of PF penalty and availing of PF incentives.
- Better operating efficiency of motors/ drives

(any three of the above or relevant answers)

Capacitor required to improve Pf from 0.75 to 0.95 for an Average Load of 100 kW = $100\{\tan(\cos^{-1} 0.75) - \tan(\cos^{-1} 0.95)\} = 100(0.882-0.329) = 55.3 \text{ kVAr}$, say 55 kVAr

Or

$$kVAr_{Old} = \sqrt{(kVA_{old}^2 - kW^2)} = \sqrt{(100/0.75)^2 - 100^2} = 87.67 \text{ kVAr}$$

 $kVAr_{new} = \sqrt{(kVA_{new}^2 - kW^2)} = \sqrt{(100/0.95)^2 - 100^2} = 32.86 \ kVAr$ Additional kVAr required = 87.67-32.86 = 54.76 kVAr, say 55 kVAr

S-3	One unit of electricity in end-use application is equivalent to about two units of electricity generated. Substantiate your answer with the computation of cascade efficiency from generating plant ex-bus to end-use application. Assume: Efficiency of Generator yard substation as 98%; transmission and Distribution Loss = 20%; Efficiency of End-use application= 65%				
Ans	Cascade efficiency from ex-bus generator to end-use = Efficiency of Generator yard substation x Efficiency of transmission and Distribution x Efficiency of End-use application Which is approximately = 0.98x(1-0.20)x0.65 = 0.5096. Therefore one unit at end use application = [1/0.5096] = 1.96 Units, Say 2 Units at ex-generator bus				
S-4	Match the following Terms in ECBC				
	1 Lighting Power Density (LPD)		Rate of Heat Flow in Watt per square meter per degree Centigrade		
	2 Energy Performance Index (EPI) of a building	В	Light admitting potential of a Glazing System		
	3 Effective Aperture(EA)	C	Watts per square meter		
	4 Visible Light Transmittance (VLT)	kWh per square meter per year			
	5 U-Factor E Ratio of Light Passing through glazing light passing through perfectly transmit glazing				
Ans	1,C; 2,D; 3,E; 4,B;	5, <i>A</i>	4		
S-5	List five energy saving measures in	a co	mmercial building.		
Ans	Optimize air conditioning volumes by measures such as use of false ceiling and segregation of critical areas for air conditioning by providing partitions.				
	Reduction in solar heat gain through building envelope by providing efficient glazing.				
	Use of energy efficient lighting systems				
	Using occupancy/ motion/ so Use of energy officient number		0 0 1		
	Use of energy efficient pumpUse of energy efficient air co	_			
	 Providing efficient barriers for 	or avo	oiding hot air leakage into cold spaces.		
	Optimizing evaporator temperature of baseling and the second of the				
	 Avoiding use of heating appl 	iianc	e in cool spaces.		

- S-6 Explain how a Variable Frequency Drive saves power in a three phase electric motor driven pumping system? What will be the reduction in power drawn by a motor by reducing the speed by half?
- Ans The VFD converts a basic fixed-frequency, fixed voltage sine-wave power (line power) to a variable frequency, variable-voltage output used to control speed of induction motors.

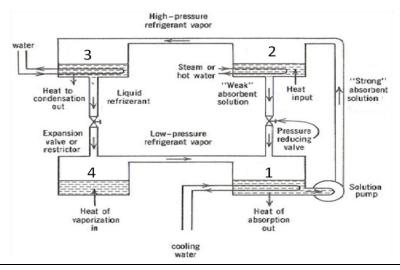
By controlling speed of a pump rather than controlling flow through use of throttling valves, energy savings can be substantial.

By affinity law, if the speed of the pumping is reduced by 1/2, the power drawn by the motor will be reduced by a factor of eight $(1/2)^3 = 1/8$. Using a fixed speed motor would require some type of mechanical throttling device, such as a vane or damper; but the fact remains that the motor would running full load and almost full speed (full power), dropping the pressure across the flow control device.

- S-7 A performance analysis of a DG set was carried out. The following are the data obtained.
 - Period of trial 2 hrs
 - Energy generated -1500 kWh
 - Level difference in diesel day tank 51.6 cm
 - Diameter of day tank 1m
 - Calorific value of fuel -10500 kcals/kg

The air drawn by the DG set is 30 kg/kg of fuel. The energy auditor recommended for a waste heat recovery system. Also the auditor indicated waste heat recovery potential is 2.6x10⁵ kcal/hr if the flue gas temperature after waste heat recovery system is maintained at 180°C.

- a) Calculate the average efficiency of DG set and its specific fuel consumption
- b) Calculate present flue gas exit temperature if specific gravity of fired fuel oil of 0.86 and specific heat of flue gas is 0.25 kcal/kg °C.


Ans	İ			
Alio	1	Fuel consumption (litres) during 2 hrs of trail period {(area x height diff) of day tank} ={3.14x(1²)/4 x0.516x1000)lit	405	
	1	{(area x height diff) of day tank} ={3.14x(1 ²)/4 x0.516x1000)lit		
	2	Specific gravity of fuel oil (given)	0.86	
	3	Oil consumption in (kg/hr) (405x 0.86 / 2)	174.18 kg/hr or 202.5 lit/hr	
	4	Specific fuel consumption (kWh/lit) (Ans a)	3.7 kWh/lit or 4.3	

			kWh/kg		
	5	Air supplied per kg of fuel (kg) (given)	30		
	6	Mass of flue gas (Sl.No.5)+1kg	31		
	7	Mass of flue gas kg per hour (Sl.No 6 x Sl.No 3)	5399.5		
	8	Waste heat recovery potential (kCal/hr) (given)	260000		
	9	Delta T across waste heat recovery system (Heat kCal/hr)/(mass of flue gas/hr*specific heat)	192.61		
	10	Exit flue gas temp. after waste heat recovery system (given)	180		
	11	Present Flue gas temp. or temp. before waste heat recovery system (180°C+Delta T) (Ans b)	372.6		
	12	Efficiency of DG set {750x860/(174.18x10500)} (Ans a)	=35.3		
S-8	A 415 V, 15kW, 3-ph, 50Hz Induction motor operates at full load, with 88% efficiency and 0.85 power factor lagging: a) Find the current drawn by the motor b) If this motor is replaced by 92.5% energy efficient motor with 0.92 power factor, what will be the power savings in terms of k W and kVA?				
Ans	a). kW_{in} (Input power) = 15 / 0.88 = 17.05 kW Line current = 17.050 / ($\sqrt{3}$ x 0.415 x 0.85) = 27.91 Amp kVA_{in} = 17.05/0.85=20.06 kVA OR ($\sqrt{3}$ x 415X27.91)				
	b) For the same output of 15 kW Input power with 92.5 % efficiency will be = 15/0.925 = 16.216 kW and Input kVA at 0.92 power factor will be = 16.216 /0.92= 17.62 or 18 kVA				
	Therefore, saving will be 17.05 -16.216 = 0.834 kW 20.06-17.62= 2.44 kVA				
1					

 — 1 .	- E O 1:		
$-n\alpha$	NT NACTI	0n - 11	

Section - III: LONG DESCRIPTIVE QUESTIONS

L-1 Identify the type of refrigeration system depicted in the following figure and also the components represented by 1,2,3 &4 . Explain briefly the function of each of these components.

Ans | Vapor Absorbtion Refrigeration system

- 1. Absorber: Concentrated LiBr absorbs the refrigerant vapor (water) and becomes dilute.
- 2. Generator: Heats the dilute LiBr refrigerant, regenerates refrigerant (water vapor) and also concentrates LiBr.
- 3. Condensor: Condenses the regenerated refrigerant (water vapor)
- 4. Evaporator: Liquid refrigerant (water) in atomised form picksup the heat from the cooling chilled water coil and becomes water vapor.
- L-2 A 1680 m³/hr reciprocating compressor is operated by a 160 kW rated motor with an efficiency of 90% and is drawing 159 kW. The actual requirement of the compressed air is increased by 100 m³/hr due to an additional equipment. Plant is considering to increase the speed of the compressor to meet this marginal requirement by modifying the compressor pulley size. The existing speed and pulley sizes are given below.

o Motor rpm : 1400 o Motor pulley diameter : 300mm o Compressor rpm : 700 rpm o Compressor Pulley diameter : 600 mm

Find out the new pulley diameter and also the additional power consumption after increasing the speed?

Based on the calculation check whether the motor has the capacity to handle the additional load.

Ans	Initial flow rate = $1680 \text{ m}^3/\text{hr}$ Modified flow rate = $(1680 + 100) = 1780 \text{ m}^3/\text{hr}$			
	Initial rpm = 700 rpm Modified rpm = $(1780 / 1680) \times 700 = 742 \text{ rpm}$			
	Modified, compressor - pulley size = using the expression $N_1D_1 = N_2D_2$ $D_2 = N_1D_1/N_2 = (700x600)/742 = 566$ mm			
	Modified motor power consumption = (742 / 700) x 159 kW = 168.54 kW			
	Capability of the motor = 160 kW / 0.9 = 178 kW			
	Hence the motor have the margin to absorb the additional load of 100 m ³ /hr			
L-3	a) A Residential colony having a fixed load of 250 KVA is situated 1 km away from a 3 phase, 11 kV / 415 V transformer from which the power is to be fed. The management is evaluating the choice of LT (1 run x 3.5 core x 300sqmm) Vs HT (1 run x 3 core x 70sqmm) distribution for a 1 km stretch. Given the following data, as a n energy auditor what would you suggest and estimate the payback period on marginal investment (difference in the two investments)			
	b) Support your recommendation with calculations.			
	c) Data			
	 Total Resistance of LT cable (conductor cross section 300sqmm)is 0.13 ohms / km and the cost is Rs 700/m 			
	 Total Resistance of HT cable(conductor cross section 70sqmm) is 0.570 ohms / km and the cost is Rs 1300/ m 			
	Unit price is Rs 7 / kWh			
	 Cost of relocating the transformer (in case of HT cabling) = Rs 1 lakh Add voltage regulations loss (single run x root 3) 			
Ans	Resistance of LT cable is 0.13 ohms / km and the cost is Rs 700/m Resistance of HT cable is 0.570 ohms / km and the cost is Rs 1300/ m			
	Current drawn in LT system = 250/(0.415*1.732) = 347.8 A			
	Current drawn in HT system = 250 /(1.732*11) = 13.1 A			
	Power loss in LT system = $((347.8)^2 \times 0.13 \times 1 \times 3 \text{ph})/1000 = 47.17 \text{ kW}$			
	Power loss in HT system = $((13.1)^2 \times 0.57 \times 1 \times 3 \text{ph})/1000 = 0.29 \text{ kW}$			
	Energy saving on account of conversion from LT to HT line = 47.17 - 0.29 = 46.87 kW			

Annual energy savings $= 46.87 \times 8760 = 4,10,639 \text{ kWh}$ Annual cost savings $= 4,10,639 \times 7 = \text{Rs } 28,74,470/-$ Investment required for laying HT cable supply = Rs 1300 x 1000 = 13,00,000/-Investment required for relocating transformer = Rs.1,00,000 Total Investment required for laying HT cable supply and relocating transformer = (13.00.000 + 1.00.000)= Rs.14,00,000Investment required for laying LT cable supply = Rs 700 x 1000 = Rs. 7,00,000/-Pay back for the marginal investment = (14,00,000 - 7,00,000)/28,74,470= 0.24 yrs = 3 monthsL-4 An air supply system with belt driven centrifugal fan and necessary damper adjustment has a flow rate of 12 m³/s. One branch of the system, having a flow of 1.5 m³/s, require static pressure of 89 mmWC. Although, the remainder of the system could operate at 66 mmWC, the fan is operated at 89 mmWC to provide for pressure required by the branch. The system operates for 6000 hours /year Energy auditor proposes to reduce the fan speed to reduce the static pressure to 66 mmWC and provide a booster fan in the duct to deliver 89 mmWC static pressure to the branch. The speed reduction is proposed to be achieved by changing the fan pulley diameter. The motor and fan efficiencies remain same after pulley change. Booster fan has an efficiency of 75% and drive motor of 85% efficiency. Measured motor input power to main supply fan = 16.2 kW Fan data: Initial fan speed = 1200 rpmInitial motor pulley diameter = 209 mm Initial fan pulley diameter = 305 mm hours operation =6000Calculate annual energy savings & cost savings Ans Solution: Revised fan speed $= 1200 \times (66/89) ^{0.5}$ = 1031 rpmNew fan pulley diameter = $305 \times 1200/1031$ $= 355 \, \text{mm}$ Initial ideal fan power (Air kW) $= 12 \times 89/102 = 10.5 \text{ kW}$ Revised ideal fan power (Air kW) = $12 \times 66/102 = 7.8 \text{ kW}$

Initial motor input power = 16.2 kW

Since motor and fan efficiencies remain same after pulley change

(10.5/16.2) = (7.8/Revised motor input power)

Revised motor input power = $16.2 \times 7.8/10.5 = 12 \text{ kW}$

Annual energy savings = $(16.2-12) \times 6000 = 25,200 \text{ kWh}$ Annual cost savings = $25200 \times \text{Rs.7/kWh} = \text{Rs.1,76,400/-}$

Booster fan flow rate = $1.5 \text{ m}^3/\text{s}$

Static pressure = (89-66)= 23mmWC Ideal fan power (Air kW) = $1.5 \times 23/102 = 0.34 \text{ kW}$ Fan shaft power = 0.34/0.75 = 0.45 kWDrive motor capacity = 0.45/0.85 = 0.53 kW

Annual energy consumption of booster fan

 $= 0.53 \times 6000 = 3180 \text{ kWh}$

Annual cost savings $= 3180 \times 7 = \text{Rs.}22,260/-$

Net savings = 1,76,400 - 22,260 = Rs. 1,54,140/-

L-5 A centrifugal water pump operates at 60 m³/hr and at 1470 RPM. The pump operating efficiency is 65% and motor efficiency is 89%. The discharge pressure gauge shows 3.4 kg/cm2. The suction is 3 m below the pump centerline.

An energy auditor recommends to replace the existing motor with a four pole motor of 91% efficiency and a slip of 1%. Determine the new flow rate and the power drawn by the motor.

In both the cases the throttle valve is fully open and system head is purely frictional.

Comment on the measure.

Ans **Existing**

Flow = $60 \text{ m}^3/\text{hr}$

Head developed by the pump = 34 - (-3) = 37 m

Power drawn by the pump = $(60/3600) \times 37 \times 1000 \times 9.81/(1000 \times 0.65)$

= 9.3 kW

Proposed

Speed of the pump with new motor = 1500- [(1/100)x1500] =1485 RPM

Flow rate of new pump with increase in RPM

$$Q1/Q2 = N1/N2$$

$$Q2 = Q1 \times (N2/N1) = 60 \times (1485/1470) = 60.61 \text{m}^3/\text{h}$$

Power drawn by the pump with new motor = $9.3 \times (1485/1470)^3 = 9.59 \text{ kW}$

Power drawn by the existing motor =9.3/0.89 = 10.46 kW

Power drawn by the new motor = 9.59/0.91 = 10.54 kW

Comment

Comment-1: Power consumption is more, so not recommended

	(or) Comment-2: Power consumption is more however flow is also more.
L-6	State true or false (1 marks each)
L-0	The efficiency of gas turbine power plant is lower than that of a combined cycle power plant.(T)
	2. The performance of air compressor at high altitudes will be lower as compared to that at sea level(T).
	3. Efficiency of transformer will be minimum when copper loss is equal to iron losses. (F)
	4. In cooling towers, the water droplets entrapped in the air stream is captured by drift eliminators.(T)
	5. To get the static pressure, the inner and outer tubes of pitot tube are connected to manometer.(F)
	6. The throttling of pump discharge will change the pump characteristic curve (F).
	7. The simplest way to reduce the discharge from a reciprocating air compressor is to throttle it. (F)
	8. Cycle of Concentration (COC) is the ratio of dissolved solids in circulating water to the dissolved solids in makeup water(T)
	9. Use of VFD will save power but also create harmonics.(T)
	10. The synchronous speed of a 4 pole motor will be 3000 rpm (F)

----- End of Section - III -----

Marks: $50 \times 1 = 50$

16th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS – September, 2015

PAPER – 3: Energy Efficiency in Electrical Utilities

Date: 20.09.2015 Timings: 0930-1230 HRS Duration: 3 HRS Max. Marks: 150

General instructions:

- Please check that this question paper contains 8 printed pages
- o Please check that this question paper contains 64 questions
- o The question paper is divided into three sections
- o All questions in all three sections are compulsory
- o All parts of a question should be answered at one place

Section - I: OBJECTIVE TYPE

- i) Answer all 50 questions
- ii) Each question carries one mark
- iii) Please hatch the appropriate oval in the OMR answer sheet with Black Pen or HB pencil

1.	Which of the following is not a part of vapour compression refrigeration cycle:					
	a) compressor b) evaporator	c) condenser	d) <u>absorber</u>			
2.	Which of the following can be attributed to commercial loss in electrical distribution system					
	, , ,	, , , , , , , , , , , , , , , , , , , ,				
3.	Which loss in a distribution transformer is dominating; if capacity	the transformer is loaded at 68	3% of its rated			
	a) core loss b) copper loss c) hysteresis loss	d) magnetic field loss				
4.	When evaporator temperature is reduced					
	a) refrigeration capacity increases b) <u>refrigeration capacity decreases</u> c) specific power consumption remains same d) compressor will stop					
5.	What is the function of drift eliminators in cooling towers					
	a) maximize water and air contact b) capture water droplets escaping with air stream c) enables entry of air to the cooling tower d) eliminates uneven distribution of water into the cooling tower					
6.	Trivector meter measures three vectors representing					
	,	ctive, power factor and apparer active, reactive and apparent po	•			

7.	Time of the Day metering (TOD) is a way to					
	a) reduce the peak demand of the distribution company b) increase the revenue of the distribution					
	company c) increase the peak demand industry d) increase the maximum demand in a					
8.	The unit of specific humidity of air is:					
	a) grams moisture/kg of dry air b) moisture percentage in air c) grams moisture/kg of air d) percentage					
9.	The purpose of inter-cooling in a multistage compressor is to					
	a) remove the moisture in the air b) reduce the work of compression c) separate moisture and oil vapour d) none of the above					
10.	The percentage reduction in distribution loses when tail end power factor raised from 0.85 to 0.95 is					
	a) 10.1% b) <u>19.9%</u> c)71% d)84%					
11.	The nomenclature T2,T5,T8 and T12 for fluorescent lamps are categorized based on					
	a) diameter of the tube c) both diameter and length of the tube d) power consumption					
12.	The inexpensive way to improving energy efficiency of a motor which operates consistently at below 40% of rated capacity is by					
	a) operating in star mode c) operating in delta mode b) replacing with correct sized motor d) none					
13.	The indicator of cooling tower performance is best assessed by					
	a) wet bulb temperature b) dry bulb temperature c) range d) approach					
14.	The illuminance of a lamp at one meter distance is 10 Lm/m². What will be the corresponding value at 0.7 meter distance					
	a)14.28 <u>b) 20.41</u> c) 10 d) none of these					
15.	The fan system resistance is predominately due to					
	a) more bends used in the duct b) more equipments in the system c) volume of air handled d) density of air					
16.	The cooling tower size is with the entering WBT when heat load, range and approach are constant.					
	a) directly proportional b) inversely proportional c) constant d) none of above					
17.	The components of two part tariff structure for HT & EHT category consumers are					
	 a) one part for capacity(or demand) drawn and second part for actual energy drawn b) one part for actual Power Factor and second part for actual energy drawn c) one part for capacity(or demand) drawn and second part for actual reactive energy drawn d) one part for actual apparent energy drawn and second part for actual reactive energy drawn 					
18.	The adsorption material used in an adsorption air dryer for compressed air is					

	a) calcium chloride b) magnesium chloride c) activated alumina d) potassium chloride						
19.	The actual measured load of 1000 k VA transformer is 400 k VA. Find out the total transformer loss corresponding to this load if no load loss is 1500 Watts and full load Copper Loss is 12,000 Watts						
	a) 1920 watts b) 1500 watts <u>c) 3420 watt</u> d) 13500 watts						
20.	The percentage imbalance when line-line voltages are 415 V, 418 V and 408 V is						
	<u>a) 1.047%</u> b) 0.32% c) 1.44% d) none of the above						
21.	Star – delta starter of an induction motor						
	 a) reduces voltage by inserting resistance in rotor circuit b) reduces voltage by inserting resistance in stator circuit c) reduces voltage through a transformer d) reduces the supply voltage due to change in connection configuration 						
22.	Slip power recovery system is applicable in case of						
	a) squirrel cage induction motor. b) wound rotor motor c) synchronous motor d) DC shunt motor						
23.	Rotating magnetic field is produced in a						
	a) single- phase induction motor b) three- phase induction motor						
	c) DC series motor d) all of the above						
24.	Power factor is highest in case of						
	a) sodium vapour lamps b) mercury vapour lamps c) fluorescent lamps d) incandescent lamps						
25.	Power factor Improvement will result in						
	a) reduction in active power b) reduction in active current						
	c) reduction in reactive power d) all the above						
26.	Motor efficiency will be improved by						
	a) reducing the slip b) increasing the slip c) reducing the diameter of the motor d) decreasing the length of the motor						
27.	Lower power factor of a DG set demands						
	a) lower excitation currents b) no change in excitation currents c) higher excitation currents c) none of the above						
28.	L / G ratio in cooling tower is the ratio of						
	a) length and girth b) length and gradient of temperature						
	c) water mass flow rate and air mass flow rate d) water volume flow rate and air volume flow rate						
29.	Installing larger diameter pipe in pumping system results in						
	a) increase in static head b) decrease in static head c) increase in frictional head						
- 00	c) increase in frictional head d) decrease in frictional head least-ollation of Variable fragues as drives (VED) allows the restart to be appared with						
30.	Installation of Variable frequency drives (VFD) allows the motor to be operated with						
	a) constant current b) <u>lower start-up current</u> c) higher voltage d)none of the						

	above				
31.	In a no load test of a poly-phas	e induction moto	r, the measured	power by the wattmet	ter consists of:
	a) core loss c) core loss, windage & friction		b) copper loss d) <u>stator copper l</u>	oss, iron loss, windag	ge & friction loss
32.	In a large compressed air syst the	em, about 70% to	o 80% of moistur	e in the compressed	air is removed at
	a) air dryer b) after co	·	air receiver	d) inter cooler	
33.	Illuminance of a surface is exp	ressed in			
	a) radians <u>b) lux</u>	c) lum	,	LPD	
34.	If two identical pumps operate	in series, then the	e combined shut	off head is	
	a) it does not affect head	b) more than o	double	c) doubled	d) less than
35.	If the speed of a reciprocating	pump is reduced	by 50 %, the hea	ad	
	a) is reduced by 50% c) remains same		educed by 12.5% e of the above		
36.	If the observed temperature in for free air delivery will be:	air receiver is hi	gher than ambie	nt air temperature the	e correction factor
	a) less than one b) great	er than one c)	equal to one	d)equal to zero	
37.	If the COP of a vapour compre motor efficiency, the cooling ef				kW at 90%
	<u>a) 34 kW</u> b) 37.8 k	W c) ().36 kW	d) none of the	above
38.	If EER of One Ton Split AC is 3	3.5, what is its po	wer rating?		
	<u>a) 1.0 k W</u> b) 1.5 kW	c)	0.8 kW	d) None of the abo	ove
39.	Humidification involves				
	a) reducing wet bulb temperatusb) reducing dry bulb temperatusc) increasing wet bulb temperatusd) reducing dry bulb temperatus	re and specific he ture and decreas	umidity ing specific humi		
40.	Higher COP can be achieved v	vith			
	a) lower evaporator temperatureb) higher evaporator temperaturec) higher evaporator temperatured) lower evaporator temperature	ire and Lower col ire and higher co	ndenser tempera ndenser tempera	<u>ature</u> ature	
41.	Friction losses in a pumping sy	stem is			
	a) inversely proportional to flow c) proportional to square of flow			proportional to cube o proportional square of	
42.	Flow control by damper operat	ion in fan system	will		

	- \ '			1.)		
	a) increase energyc) reduce system re			b) reduce energy consumptiond) none of the above		
43.			(THD) for current for the Third harmonic current		eadings. Current at 50 current = 35 A	
	a) 58 %	b) 48 %	<u>c) 24%</u>	d) 34 %		
44.			mmWC absolute press 847.84 mmWC m³/kg n		cular weight of air:	
	a) 1.2 kg/m³	b) 1.5 kg/m	c) <u>1.15 kg/m³</u>	d) none o	f the above	
45.	A spark ignition eng	gine is used for fir	ing which type of fuels:			
	a) high speed diese	el b)	light diesel oil	c) <u>natural gas</u>	d) furnace oil	
46.			h of 1000 m² area. If t g Power Density (LPD)		ower allowance for the	
	<u>a) 10.75</u>	b) 0.09	c) 43	d) data insuffic	cient	
47.			our of diesel oil. If the at is the kVA loading of		ption of this DG set is	
	a) 212 kVA	b) <u>265 kVA</u>	c) 170 kVA	d) none of the	ne above	
48.		•	600 Volt capacitor but ut of the following could	•	ndicates that it is only	
	a) operating at low	load b) high voltage	c) l <u>ow voltage</u>	d) low current	
49.	 A 50 hp motor with a full load efficiency rating of 90 percent was metered and found to be operating at 25 kW. The percent motor load is 					
	a) 75%	b) 50%	<u>c) 60%</u>	d) 25%		
50.	A 22 kW, 415 kV, and 0.8 PF. What v			e induction motor op	erating at 420 V, 40 A	
	<u>a) 85.0%</u>	b) 94.5%	c) 89.9%	d) 88.2%		

Section - II: SHORT DESCRIPTIVE QUESTIONS

- (i) Answer all <u>Eight</u> questions(ii) Each question carries <u>Five</u> marks
- S-1 List five energy saving measures for air conditioning system.

Marks: $8 \times 5 = 40$

- Insulate all cold lines / vessels using economic insulation thickness to minimize heat gains.
- Optimize air conditioning volumes by measures such as use of false ceiling and segregation of critical areas for air conditioning by air curtains.

Minimize the air conditioning loads by measures such as

- roof cooling,
- roof painting,
- · efficient lighting,
- pre-cooling of fresh air by air- to-air heat exchangers
- Variable volume air system
- Optimal thermo-static setting of temperature of air conditioned spaces
- Sun film application

Minimize the process heat loads by measures involving TR reduction and refrigeration temperature level reduction

- Flow optimization
- Heat transfer area increase to accept higher temperature coolant
- · Avoid wastages by heat gains
- Avoid wastages by loss of chilled water
- Avoid wastages by ideal flows.
- Frequent cleaning and descaling of all heat exchangers

At refrigeration and AC plant area

- Minimize part load operations by matching loads and plant capacity on line; adopt variable speed drives for varying load.
- Ensure regular maintenance of all AC plant components as per manufacturers guide lines.
- Ensure adequate quantity of chilled water flows, cooling water flows
- Avoid by pass flow by closing valves of ideal equipment
- Adopt VAR system where economics permit as non CFC solutions
- Make efforts to continuously optimize condenser and evaporator parameters for minimizing specific energy consumption and maximizing capacity

..... (5 marks for relevant points as above)

S-2 The total system resistance of a piping loop is 50 meters and the static head is 15 meters at designed water flow. Calculate the system resistance offered at 75%, 50% and 25% of water flow

Solution:

Total System Resistance of piping loop: 50m

Static Head:15 m

So, Dynamic Head at designed water flow: 35m

..... (2 mark)

SI.No.	Flow%	Dynamic Head (m) = 35 x (%flow) ²	Static Head (m)	Total Resistance (m)
1	75.0%	19.68	15	34.68
2	50.0%	8.75	15	23.75
3	25.0%	2.19	15	17.19

.... (3 marks-(each 1 mark))

S-3

In a DG set, the generator is rated at 1000 kVA, 415V, 1390 A, 0.8 PF, 1500 RPM. The full load specific energy consumption of this DG set as measured by the energy auditor is 4.0 kWh per liter of fuel and air drawn by the DG set is 14 kg/kg of fuel. The energy auditor has recommended a waste heat recovery (WHR) system. Also the auditor indicated that the waste heat recovery potential is 2.6x10⁵ kCal/hr at the existing engine exhaust gas temperature of 583°C.

Estimate the exhaust temperature to chimney after installation of proposed WHR system. The specific gravity of fuel oil is 0.86 and specific heat of flue gas is 0.25 kCal/kg °C.

	1 2 3 4 5 6 7	Rated kVA of Diesel Generator (given) Rated kW @ 0.8 pf Specific fuel consumption (kWh/lts) (given) Specific gravity of fuel oil (given) Oil consumption at full load in kg/hr ((2*4)/3) Air supplied per kg of fuel (kg) (given) Mass of flue gas (14+1)	1000 800 4 0.86 172 14 15	0.5 mark 1 mark
	8	Mass of flue gas kg per hour (7*5) Waste heat recovery potential kCal/hr (given)	2580 2,60,000	1 mark
	10	Delta T across waste heat recovery system (Heat kCal/hr)/(mass of flue gas kg/hr*specific heat, kcal/kg°C) = (260000/2580x0.25)	403	1.5 mark
 	11	Present Flue gas temp. or temp. before waste heat recovery system (given)	583	
	40		180	4
(diame	Exit flue gas temp. after waste heat recovery system (583 – delta T) apput power to a fan is 30kW for a 2500 Nm³/hr fluter is 300mm. If the flow to be reduced by 15% by	uid flow. Th	
\	The ir	system (583 – delta T) nput power to a fan is 30kW for a 2500 Nm³/hr fleter is 300mm. If the flow to be reduced by 15% by should be the diameter of fan pulley and power input to	uid flow. Th	e fan pulle
\	The ir diame what s	system (583 – delta T) nput power to a fan is 30kW for a 2500 Nm³/hr fleter is 300mm. If the flow to be reduced by 15% by should be the diameter of fan pulley and power input to	uid flow. Th changing th fan.	e fan pulley
\	The ir diame what s	system (583 – delta T) nput power to a fan is 30kW for a 2500 Nm³/hr fleter is 300mm. If the flow to be reduced by 15% by should be the diameter of fan pulley and power input to on Input power to fan kW	uid flow. The changing the fan.	e fan pulle
\	The ir diame what s	system (583 – delta T) nput power to a fan is 30kW for a 2500 Nm³/hr fluter is 300mm. If the flow to be reduced by 15% by should be the diameter of fan pulley and power input to on Input power to fan kW Fluid flow Nm³/hr	uid flow. Th changing th fan.	e fan pulle
\	The ir diame what s	system (583 – delta T) nput power to a fan is 30kW for a 2500 Nm³/hr fleter is 300mm. If the flow to be reduced by 15% by should be the diameter of fan pulley and power input to on Input power to fan kW Fluid flow Nm³/hr Diameter of Fan pulley (mm)	uid flow. The changing the fan. 30 2500 300	e fan pulle
\	The irrdiame what s	system (583 – delta T) nput power to a fan is 30kW for a 2500 Nm³/hr fluter is 300mm. If the flow to be reduced by 15% by should be the diameter of fan pulley and power input to on Input power to fan kW Fluid flow Nm³/hr	uid flow. Th changing th fan.	e fan pulley
\	The ir diame what s	system (583 – delta T) Input power to a fan is 30kW for a 2500 Nm³/hr fluter is 300mm. If the flow to be reduced by 15% by should be the diameter of fan pulley and power input to the flow Nm³/hr Input power to fan kW Fluid flow Nm³/hr Diameter of Fan pulley (mm) Governing Equation is $N_1D_1=N_2D_2$ $N_2=0.85N_1$ From Eqn-1 $D_2=(D_1)^*(N_1/N_2)$; = (300)*($N_1/0.85N_1$)	uid flow. Th changing th fan. 30 2500 300 Eqn-1	e fan pulley
\	The irr diame what s Solution 1 2 3 4 5 6 7	system (583 – delta T) nput power to a fan is 30kW for a 2500 Nm³/hr fleter is 300mm. If the flow to be reduced by 15% by should be the diameter of fan pulley and power input to on Input power to fan kW Fluid flow Nm³/hr Diameter of Fan pulley (mm) Governing Equation is N₁D₁=N₂D₂ N₂ = 0.85N₁	uid flow. The changing the fan. 30 2500 300 Eqn-1 given	e fan pulley e fan pulley

Ans

Lux (lx) is the illuminance produced by a luminous flux of one lumen, uniformly distributed over a surface area of one square meter. It is also defined as the International System unit of illumination, equal to one lumen per square meter.

..... (2.5 marks)

Luminous efficacy is defined as the ratio of luminous flux emitted by a lamp to the power consumed by the lamp. Efficacy is energy efficiency of conversion from electricity to light form.

..... (2.5 marks)

S-6 During an energy audit of a power plant cooling tower, the following observations were made.

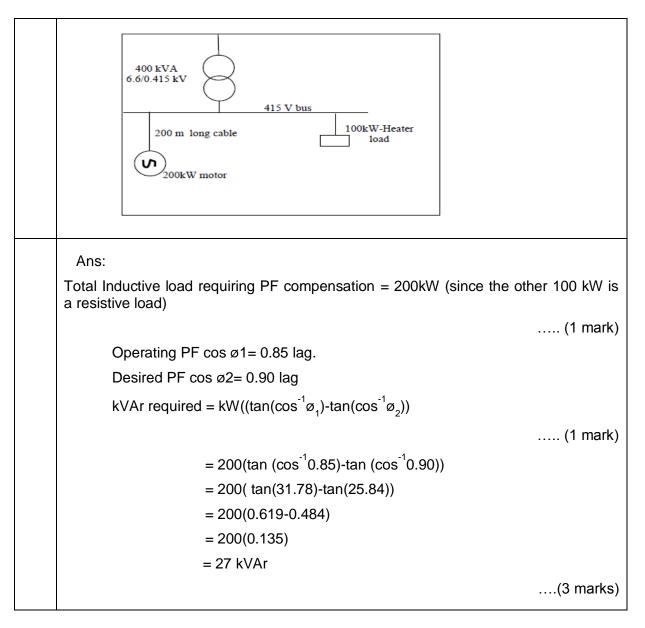
Power plant generation = 785 MW
 Circulation rate = 107000 m³ /hr

Cooling tower range = 10.5°C
 Power plant design COC value = 3.8°C

As an auditor find out

a) The total water consumption per hour,

b) Specific water consumption in m³/MW generation.


The plant is pursuing an up-gradation treatment plan to increase COC to 7.0.

c) What would be the potential water savings in m³/hr and m³/MW generation?

Ans

S.No.	Item Ref.	Calculation		value	units	
1	Evaporation loss	0.00085*Circulati on rate in m³/hr * (CT range in deg C)*1.8	0.00085 * 107000 * (10.5)*1.8	1719	m³/hr	0.5 mark
2	Blow-down loss	Evaporation loss/(COC-1)	1719/ (3.8-1)	614	m³/hr	0.5 mark
3	Total as run hourly consumption	S.No 1 + S.No 2	(1719+614)	2333	m ³ /hr	0.5 mark
4	Specific water consumption	S.No. 3/785	(2333/785)	2.97	m³/MW	0.5 mark
5	Blow down at improved COC of 7.0	Evaporation loss/(COC-1)	1719/(7-1)	286.5	m³/hr	0.5 mark
6	Total water consumption at improved COC	S.No 1 + S.No 5	(1719+286.5)	2005.5	m ³ /hr	0.5 mark
7	Specific water consumption at	S.No 6/785	(2005.5/785)	2.56	m³/MW	0.5 mark

		improved COC					1		
	8	Total water saving per hour	S.No 3 - S.No 6	(2333- 2005.5)	327.5	m³/hr	0.5 mark		
	9	Water saving/MW generation	S.No 8/785	(327.5/785)	0.417	m³/MW	1 mark		
S-7	(a) I (b)	 Explain with equation for COP_{Carnot} that: (a) higher COP_{Carnot} is achieved with higher evaporator temperature and lower condenser temperature. (b) COP_{Carnot} does not take into account the type of compressor (c) How is the COP normally used in the industry given? 							
	Ans:	Ans:							
	me: two	asure of refrigera	officient of Performation efficiency of a semperatures, named and the first term of	an ideal refrige	ration sys	stem- dep	ends on		
		COP being given	as: COP _{Carnot} = Te	e / (Tc - Te).		(2	2 marks)		
	eva a r	aporator temperati atio of temperati	o indicates that hure and lower con ures, and hence	denser temper	rature. Bu	t COP _{Carn}	ot is only		
	COI	npressor.				(2	2 marks)		
	c) Hend	ce the COP norma	ally used in the ind	lustry is given t	ру				
		COP = [Cooling e	ffect (kW)/Power i	nput to compre	essor (kW))]			
		ere the cooling efforessed as kW	ect is the differen	ce in enthalpy	across th	ne evapor	ator and		
							(1 mark)		
S-8	200 kW line pov	motor (which is 2 wer factor of the	diagram depicts th 00 metres away fr system is 0.85 I ning line to 0.9 lag	om the 415V, lag. Calculate	LT bus). T	he main i	ncoming		

..... End of Section - II

Marks: $6 \times 10 = 60$

Section – III: LONG DESCRIPTIVE QUESTIONS

- (i) Answer all **Six** questions
- (ii) Each question carries **Ten** marks

L-1 Compare the performance of centrifugal chiller with vapour absorption chiller using the data given below:

SI. No.	Parameter	Centrifugal Chiller	VAM
1	Chilled water flow (m ³ /h)	192	183
2	Condenser water flow (m ³ /h)	245	360
3	Chiller inlet water temperature (°C)	13	14.5
4	Condenser water inlet temperature (°C)	28	32
5	Chiller outlet water temperature (°C)	7.8	9.2
6	Condenser water outlet temperature (°C)	36.2	40.7
7	Chilled water pump consumption (kW)	32	31
8	Condenser water pump consumption (kW)	38	52
9	Cooling tower fan consumption (kW)	9	22

If the compressor of centrifugal chiller consumes 205 kW, the steam consumption for VAM is 1620 kg/Hr. Calculate the following:

- i) Refrigeration load delivered (TR) for both systems?
- ii) Condenser Heat load (TR) for both systems?
- iii) Compare auxiliary power consumption for both systems, give reason?
- iv) If electricity cost is Rs.4.0/kWh and steam cost is Rs.0.45/kg compare the operating cost for both systems.

Solution:

a) Compression Chiller vs. VAM

Parameter	Centrifugal Chiller	VAM	
Refrigeration load delivered (TR) = Mass of Chilled water flow x Specific heat x Delta T of Chilled water = Sl. No.1 m³/hr * 1000kg/m³ *1 kcal/kg °C * (Sl. No. 3. – Sl. No. 5) / 3024	330.16	320.73	2 marks
Condenser heat load delivered (TR) = Mass of condenser water flow x Specific heat * Delta T of condenser water = SI. No.2 m³/hr * 1000kg/m³ *1 kcal/kg °C * (SI. No. 6 – SI. No. 4) / 3024	664.35	1035.71	2 marks
Auxiliary Power Consumption (kW) = (Sl. No. 7 + Sl. No. 8 + Sl. No. 9)	79	105	
	 = Mass of Chilled water flow x Specific heat x Delta T of Chilled water = SI. No.1 m³/hr * 1000kg/m³ *1 kcal/kg °C * (SI. No. 3. – SI. No. 5) / 3024 Condenser heat load delivered (TR) = Mass of condenser water flow x Specific heat * Delta T of condenser water = SI. No.2 m³/hr * 1000kg/m³ *1 kcal/kg °C * (SI. No. 6 – SI. No. 4) / 3024 Auxiliary Power Consumption (kW) = 	Refrigeration load delivered (TR) = Mass of Chilled water flow x Specific heat x Delta T of Chilled water = Sl. No.1 m³/hr * 1000kg/m³ *1 kcal/kg °C * (Sl. No. 3. – Sl. No. 5) / 3024 Condenser heat load delivered (TR) = Mass of condenser water flow x Specific heat * Delta T of condenser water = Sl. No.2 m³/hr * 1000kg/m³ *1 kcal/kg °C * (Sl. No. 6 – Sl. No. 4) / 3024 Auxiliary Power Consumption (kW) =	Refrigeration load delivered (TR) = Mass of Chilled water flow x Specific heat x Delta T of Chilled water = Sl. No.1 m³/hr * 1000kg/m³ *1 kcal/kg °C * (Sl. No. 3. – Sl. No. 5) / 3024 Condenser heat load delivered (TR) = Mass of condenser water flow x Specific heat * Delta T of condenser water = Sl. No.2 m³/hr * 1000kg/m³ *1 kcal/kg °C * (Sl. No. 6 – Sl. No. 4) / 3024 Auxiliary Power Consumption (kW) =

	The auxiliary power consumption in case of because heat rejection in VAM condenser is centrifugal chiller with approximate similar cooli	comparatively	•	2 marks
4	Total Energy Consumption:	284 kW (Auxiliary Power of 79kW and Chiller consumptio n of 205	Auxiliary Power of 105 kW and Steam consumpti on of 1620 kg/hr	2 marks
5	Operating Energy Cost per Hour of Operation	Rs. 1136/- (284 * 4 = Rs. 1136/-)	Rs 1149/- (105 * 4 = Rs. 420/- plus 1620 * 0.45 = Rs. 729/-)	2 marks

- L-2 a) Calculate the ventilation rate for an engine room of 20m length, 10.5m width and 15m height; if the recommended Air Changes per Hour (ACH) is 20.
 - b) Air at 25,200 m 3 /hr and at 1.2 kg/m 3 density is flowing into an air handling unit of an inspection room. The enthalpy difference between the inlet and outlet air is 2.38 kcal/kg. If the motor draws 22 kW with an efficiency of 90%, find out the kW/TR of the refrigeration system. (1 cal = 4.183)

Solution:

a) Ventilation Rate:

Room Length (m)	20
Room Height (m)	15
Room Width (m)	10.5
Air Changes per Hr (ACH)	20
Ventilation rate (m ³ /Hr) =	
Length (m) * Height (m) * Width (m) * ACH	63000

..... (5 marks)

b)

Refrigeration tonnes Q x ρ x (h₂-h₁)

25200 x 1.2 x (2.38) kcal/kg

71,971 kcal/hr

....(2 marks)

TR

71,971 /3024 23.8 TR

	(1 mark)
Power input to the compressor	22 x 0.9= 19.8 kW
	(1 mark)
kW/TR	19.8/23.8 = 0.83
	(1 mark)

L-3 In a diary plant 3 numbers of cooling water pumps, identical in characteristics are installed in parallel to supply cooling. During normal operation two of the pumps are operational while one pump is on standby. All pump combinations develop a discharge pressure of 3.4 kg/cm² (a). The installed water flow meter at the common header during an energy audit reads the following:

Operating Pump No.	Flow Rate (m³/hr)
Pump No 1 & 2	545
Pump No 2 & 3	535
Pump No 3 & 1	550

The power drawn by motors of cooling water pump 1, 2 & 3 are 33 kW, 31.5 kW & 32.5 kW respectively. While the operating motor efficiency for pump no. 1 & 2 is 92% the motor efficiency for pump no. 3 is 91.5%. If the water level in suction of all pumps is 3 meter below pump central line. Calculate the following:

- i) Individual pump efficiencies
- ii) Specific energy consumption (kWh/m³)
- iii) Which is the best operating pump combination

Solution:

Let flow of pump 1,2 & 3 be X, Y and Z respectively.

From given:

$$X + Y = 545$$
 ----(1)

$$Y + Z = 535$$
 ----(2)

$$X + Z = 550$$
 ----(3)

Subtracting eqn (2) from eqn (1):

$$X - Z = 10$$
 ----(4)

Adding eqn (3) and eqn (4):

$$2X = 560$$

$$X = 280$$

Putting X value in eqn (1) and (2):

$$Y = 265$$
 and $Z = 270$

Therefore, individual pump flow rates are: 280 m³/hr, 265 m³/hr and 270 m³/hr

respectively.

.... (3 marks)

Pump Ref:	1	2	3	
A) Flow Rate (M³/hr) (calculated)	280	265	270	
B) Discharge Head (m) =3.4 kg/cm ² (a) = 2.4 kg/cm ² (g) =24 m (given)	24	24	24	
C) Suction Head (m) (g) (given)	-3	-3	-3	
D) Total Head (Discharge Head - Suction Head)* (B-C)	27	27	27	1 mark
E) Liquid kW [flow (m ³ /s)*total head (m)*density (1000 kg./m ³) * 9.81 (m/s ²)/1000]	20.60	20.22	19.87	2 marks
F) Power Drawn by motor kW (given)	33	31.5	32.5	
G) Motor eff. % (given)	92.0%	92.0%	91.5%	
H) Pump input power kW (FxG)	30.36	28.98	29.74	1 mark
I) Pump eff. % (E/H)	67.9%	69.8%	66.8%	1 mark
J) Specific Energy Consumption (kWh/M³) (F/A)	0.118	0.119	0.120	1 mark

Pump No. 1 & 2 are the best performing operating combination.

..... (1 mark)

Note:

*The total head has been calculated subtracting Discharge Gauge pressure from suction gauge pressure. The candidates can also calculate total head as difference of absolute pressures as follows:

Discharge Head= 3.4 kg/cm^2 (a) Suction Head = $1-0.3 \text{ kg/cm}^2 = 0.7 \text{ kg/cm}^2$ Total Head Developed = $3.4-0.7 = 2.7 \text{ kg/cm}^2 = 27 \text{ m}$

L-4

- a) In a chemical industry, cooling water of 9000 m³/hr and 6000 m³/hr from two independent heat exchangers with temperature of 41°C and 52°C respectively are fed to one cooling tower after proper mixing at top basin. If measured heat rejection by the cooling tower is 45,000TR, calculate effectiveness and evaporation loss of the cooling tower at 31°C WBT.
- b) In an air conditioning duct 0.5 m x 0.5 m, the average velocity of air measured by vane anemometer is 28 m/s. The static pressure at suction of the fan is -20 mmWC and at the discharge is 30 mmWC. A three phase induction motor draws 10.8 A at 415 V with a power factor of 0.9. Find out efficiency of the fan if motor efficiency = 88% (neglect density correction)

Solution:

a)

SI. No.	Particulars	Stream 1	Stream 2	
1	Flow Rate (m³/hr) (given)	9000	6000	
2	Temp. ⁰ C (given)	41	52	
3	Mix. Flow Rate (m ³ /Hr) (Sl.1 +2)	150	000	
4	Mix. Hot Water Temp. ⁰ C [(Flow1 * Temp. 1) + (Flow 2 *Temp. 2)]/ (Flow1 + Flow 2)	45	5.4	1 mark
5	Heat Rejection (TR) (given)	45000		
6	Range of Cooling Tower ⁰ C: (Heat Rejection TR * 3024) / (Flow M ³ /hr * 1000)	9.0)72	1 mark
7	WBT °C (given) 31			
8	Cold Water Temp. ⁰ C (Mix. Hot Water Temp. – Range)	36.	328	0.5 mark
9	Approach ⁰ C (Cold Water Temp. – WBT)	5.3	328	0.5 mark
10	Effectiveness (Range/ (Range + Approach))	6	3	1 mark
11	Evaporation Loss (m³/hr) = 0.00085*1.8*Mix. Flow m³/hr*Range	20	8.2	1 mark

b)

1	Area of the Duct: (0.5*0.5) m ²	0.25	
2	Avg. velocity (m/s) (given)	28	
3	Air Flow (m ³ /s) (Sl. 1* Sl. 2)	7	1 mark
4	Suction static Pr. (mmWC) (given)	-20	
5	Discharge Static Pr. (mmWC) (given)	30	
6	Power drawn by the motor (kW): (1.732 * 415*10.8*0.9/1000)	6.99	1 mark
7	Air Power kW: = Flow (m ³ /s)* (Dis. Pr – Suc. Pr.) mmWC /102	3.43	1 mark
8	Power to fan Shaft kW (Motor Drawn power * Motor eff. Of 88%)	6.15	1 mark
9	Fan Static Eff. (%) = Air Power*100%/Shaft Input	55.76	1 mark

L-5 One of the process industries has installed 18 MW cogeneration plant. The Cogeneration plant maximum condenser load is 7 MW and the extraction steam of 57 TPH is used for process and also for vapour absorption machine. The condenser heat load is 550 Kcal/kg of steam and the steam rate is 5 kg/KW for condenser power. The heat load of VAM in 127 Kcal/min/TR and the capacity of VAM is 1100 TR. Estimate cooling tower heat load in Kcal/hr. If the tower is designed for 6°C range, calculate the water flow in cooling tower. The design approach temperature of the CT is 5°C.

	Ans.	Condenser load = 7 MW	
		Steam rate for condenser = 5 kg/KW	
		Total steam required for condenser power = 7000 X 5 = 35000 Kg/hr.	
		(2	2 marks)
		Condenser heat load = 35000 x 550 = 19250000 Kcal/hr.	
		(2	2 marks)
		Heat load of VAM = $1100 \times 127 \times 60 = 8382000 \text{ Kcal/hr}$.	
		(2	2 marks)
		Total heat load = 19250000 + 8382000 = 27632000 Kcal/hr.	,
		(2	2 marks)
		Range of tower = 6 deg C	
		Cooling water Flow required=27632000/6=4605333 Its or 4605 m ³ .	
		·	2 marks)
		\2	L marks)
L-6	a) List	five disadvantages of low Power Factor ?	
	0.88.T penalt prescr improv	industry is losing money as penalty on account maintaining a poor power of the power utility has specified a minimum power factor of 0.9 to avoid penalty on energy cost is 1% for every 0.01 power factor less than the number of the incentive on energy cost is available @ 1.5% for every event of the industry is Rs 6 lakhs, connual cost saving potential if power factor is improved to unity from the current	alty. The ninimum ery 0.01 calculate
	Answe		
	a) Die	(Any five -1 mark each) sadvantages of low power factor are	
	a) Dis	1.) Large Line Losses (Copper Losses)	
		 Large kVA rating and Size of Electrical Equipments Greater Conductor Size and Cost 	
		4.) Poor Voltage Regulation and Large Voltage Drop	
		5.) Low Efficiency	
		6.) Penalty from Electric Power Supply Company on Low Power factor	
	b)		
		num PF to be maintained to avoid penalty = 0.9 ent penalty = 1.00 % (on energy bill) for every 0.01 P.F.	
	For 0.	.02 PF = 1.00 x 2 = 2.0% (1 mark)	
		tives = $1.5 \times 5 = 7.5\%$ (1 mark) gy saving potential = 9.5%	
	Cost r	reduction potential = 5.5% reduction potential per month = 6 lakh x 9.5% = Rs.57000 (2 mark) al cost Reduction = 57000x12 = Rs.684000 (1 mark)	

----- End of Section - III -----

15th NATIONAL CERTIFICATION EXAMINATION **ENERGY MANAGERS & ENERGY AUDITORS- August, 2014**

PAPER - 3: Energy Efficiency in Electrical Utilities

Date: 24.04.2014 Timings: 0930-1230 HRS Duration: 3 HRS Max. Marks: 150

Section - I: **OBJECTIVE TYPE**

Marks: $50 \times 1 = 50$

- Answer all 50 questions (i)
- (ii) Each question carries one mark

1.	Which loss is considered the most unreliable or complicated to measure in electric motor efficiency testing?				
	a) stator Cu loss b) rotor Cu loss c) stator Iron loss d) stray loss				
2.	A pure resistive load in an alternating current (AC) circuit draws				
	a) lagging reactive power c) leading reactive power d) none of the above				
3.	Select the incorrect statement: The advantage of PF improvement by capacitor addition in an electric network is				
	 a) active power component of the network is not affected b) reactive power component of the network is not affected c) I²R power losses are affected in the system d) voltage level at the load end is affected 				
4.	"Heat Rate" of a thermal power station is the heat input in kilo Calories or kilo Joules, for generating a) one kW of electrical output c) one kWh of electrical output d) one kVA of electrical output				
5.	Improving power factor at motor terminals in a plant will				
	a) increase active power drawn by motor c) reduce contract demand with utility b) reduce system distribution losses d) increase motor design power factor				
6.	For a 6 pole induction motor operating at 49.5 Hz, the percentage slip at a shaft speed of 950 RPM will be				
	a) <u>4.0 %</u> b) 5.0 % c) 0.04 % d) none of the above				
7.	A plant had installed three phase shunt capacitors to improve power factor at Motor Control Circuit (MCC). Busbar three phase Voltages at the main electrical panel of a plant were balanced but at the Motor Control Circuit (MCC),receiving three phase power from busbars, the line voltages were found to be unbalanced. The main reason for this unbalanced voltage at MCC among the following could be a) PF capacitors were operating at higher supply frequency b) PF improvement in all phase was not uniform due to blown fuse in one phase of the 3				

	 phase PF capacitors c) PF capacitors were operating at higher voltage then their rated values d) PF capacitors were operating at lower voltage then their rated values 			
8.	A 50 kVAr, 415 V rated power factor capacitor was found to be having terminal supply voltage of 430 V. The capacity of the power factor capacitor at the operating supply voltage would be approximately			
	a) <u>53.67 kVAr</u>	b) 50 kVAr	c) 46.57 kVAr	d) none of the above
9.	across the motor te off due to power fa could be a) motor was oversi b) motor was under c) charging current	rminals got damage ilure. The possible ized sized of the capacitors wa	ed along with capacitor reason for the motor labeled and the motor labeled as more than the magr	tatic PF correction capacitors ors once supply was switched burn out among the following the following the following the following output of the motor or magnetizing current
10.	An induction motor	rated for 75 kW and	94 % efficiency, oper	ating at full load, will
	a) deliver 70.5 kW	b) <u>deliver 75 kW</u>	c) draw 75 kW	d) deliver 79.78 kW
11.	Higher chiller COP	can be achieved wit	h	
	b) higher evaporato c) lower evaporator	r temperature and lo	igher condensing tem ower condensing temp igher condensing temp wer condensing temp	<u>perature</u> perature
-		•		
12.	Increase in the de consumption by	livery pressure of	a compressor by 1 b	par would reduce the power
12.	consumption by		a compressor by 1 tc) 11 to 15 %	d) none of the above
12.	consumption by a) 1 to 5 % b) 6 to 10 %		d) none of the above
	consumption by a) 1 to 5 % b The FAD of a recip) 6 to 10 %	c) 11 to 15 %	d) none of the above
	consumption by a) 1 to 5 % b The FAD of a recip a) pressure b)) 6 to 10 % rocating compresso volume	c) 11 to 15 % r is directly proportion	d) none of the above al to d) all of the above
13.	consumption by a) 1 to 5 % b The FAD of a recip a) pressure b) Which of the followi a) smoothens puls b) increases the consumption by	ompressed air pressumes of compresse	c) 11 to 15 % r is directly proportion c) speed receivers in a compres	d) none of the above al to d) all of the above
13.	consumption by a) 1 to 5 % b The FAD of a recip a) pressure b) Which of the followi a) smoothens puls b) increases the co c) stores large vol d) facilitates draini	of to 10 % rocating compressor volume Ing is not true of air in the compressed air pressures of compressed air pressures of moisture pressure drop in notes.	c) 11 to 15 % r is directly proportion c) speed receivers in a compres	d) none of the above al to d) all of the above
13.	consumption by a) 1 to 5 % b The FAD of a recip a) pressure b) Which of the followi a) smoothens puls b) increases the color of the	of to 10 % rocating compressor volume Ing is not true of air in the compressed air pressures of compressed air pressures of moisture pressure drop in notes.	c) 11 to 15 % r is directly proportion c) speed receivers in a compres	d) none of the above al to d) all of the above ssed air system?
13.	consumption by a) 1 to 5 % b The FAD of a recip a) pressure b) Which of the followi a) smoothens puls b) increases the co c) stores large vol d) facilitates draini Typical acceptable compressed air net a) 1.0 bar All other conditions	rocating compressor volume ng is not true of air restrictions air output compressed air pressures of compresse ng of moisture pressure drop in nework is b) 0.7 bar remaining the same	c) 11 to 15 % r is directly proportion c) speed receivers in a compres sure d air nains header at the f	d) none of the above al to d) all of the above ssed air system? Farthest point of an industrial d) 0.3 bar stem, at which of the following
13. 14. 15.	consumption by a) 1 to 5 % b The FAD of a recip a) pressure b) Which of the followi a) smoothens puls b) increases the co c) stores large vol d) facilitates draini Typical acceptable compressed air net a) 1.0 bar All other conditions	rocating compressor volume ng is not true of air restrictions air output compressed air pressures of compresse ng of moisture pressure drop in nework is b) 0.7 bar remaining the same	c) 11 to 15 % r is directly proportion c) speed receivers in a compres sure d air nains header at the f c) 0.5 bar e in a refrigeration sys	d) none of the above al to d) all of the above ssed air system? Farthest point of an industrial d) 0.3 bar stem, at which of the following

		ditionar installed in		
	remove heat of	ditioner installed in	a room and wo	rking continuously for one hour will
	a) 3024 kcals	b) <u>4536 kcals</u>	c) 3000 kcals	d) 6048 kcals
	If the power consi efficiency ratio?	umed by a 1.5 TR re	efrigeration comp	ressor is 2.5 kW , what is the energy
6	a) <u>2.1</u>	b) 1.5	c) 0.6	d) 1.66
,				em, which performance ratio (energy means a more efficient refrigeration
	a) Coefficient of p c) <u>kW per ton</u>	performance(COP)	b) Energy E d) none of the	fficiency Ratio (EER) above
21.	2 ton of refrigerati	on (TR) is equivaler	nt to about	
	a) 100.8 kcal/min	b) 7032 W	c) 428.7 B	ΓU/min <u>d) all of the above</u>
1	the motor pulley		cm to 15 cm ke	pm motor through a V-belt system. If eping the motor rpm and fan pulley
1	a) 1176 rpm	b) 1764 rpm	c) 588 rpm	d) none of the above
23. I	In series operation	n of identical centrifu	ugal fans, ideally	
	a) flow doubles c) static pressure	goes up by four time		essure doubles es up by four times
		wer of a motor pumner, the pump efficient		the power drawn by the motor is 16
6	a) <u>55.5%</u>	b) 50%	c) 45%	d) none of the above
	The energy savin systems with	g with variable spe	ed drives in a pu	umping system will be maximum for
á	a) pure static hea c) high static head	d d and low friction he	b <u>) pure friction</u> ad d) high static	o <u>n head</u> head with high friction head
	be cooled from 3		luid specific heat	lowing in a heat exchanger and is to is 0.78 kcal/kg. If the chilled water ter flow rate is
	a) 67.2 m³/hr	b) <u>52.42 </u> m³/hr	c) 50 m ³ /hr	d) none of the above
27.	The inner tube of	an L-type pitot tube	is used to measu	ure in the air duct
;	a) total pressure	b) static pressure	e b) velocity	pressure d) dynamic pressure
	The intersection p	oint of the centrifug	al pump characte	eristic curve and the design system
	a) pump efficienc c) system efficien		b) <u>best effic</u> d) none of t	
29. I	In case of increas	ed suction lift from o	open wells, the po	ump delivered flow rate

	a) increases	b) <u>decreases</u>	c) remains same	d) none of the	above
30.	In pumping sys	stems where station	c head is a high prop	portion of the total,	the appropriate
	a) install two or more pumps to operate in parallel b) install two or more pumps to operate in series c) install two or more pumps to operate in independent operation d) none of the above				
31.	A Plant wants to replace the existing 100 TR water cooled vapour compression refrigeration system with a waste heat driven vapour absorption chiller. The capacity of the existing cooling tower				
	a) needs no ch c) is to be raise	nange ed to 1.2 times		s to be doubled one of the above	
32.			a pump is 30 kW. T vn by the motor will		is 0.92 and pump
	a) 65.2 kW	b) 15 kW	c) 30 kW	d) <u>32.6 kW</u>	
33.			ling tower at 120 m ³ nbient temperature c		the load on cooling
	a) <u>198.4 TR</u>	b) 357 TR	c) 158 TR	d) none of the	above
34.	plant improved		to 0.99 by adding ca		factor of 0.88. The id side. The release
	a) <u>111</u>	b) 889	c) 999	d) none of the a	bove
35.	The wet bulb t	emperature norma	ally chosen for desig	ning of cooling tow	er is
	b) <u>average ma</u> c) average mi		or summer months		
36.	Which one fro operating cond		pes of cooling tower	rs consumes least	power for the same
		w film fill cooling to w splash fill cooling		oss-flow splash fill one of the above	cooling tow
37.	Lux is defined	as			
	 a) ratio of luminous flux emitted by a lamp to the power consumed by the lamp b) one lumen per square meter c) one lumen per square feet d) none of the above 				
38.	Which among	the following is the	e most energy efficie	ent lamp for the sar	ne wattage rating?
	a) HPMV	b) GLS	c) (CFL d) Meta	al halide
39.	is a me	asure of effect of l	ight on the perceive	d colour of objects	

	a) lux	b) lumens	<u>c) C</u>	RI d) la	amp circuit efficacy
40.	Which of the	following is the best defir	nition of illumina	ance?	
	b) flux densityc) time rate of	ux incident on an object y emitted from an object f flow of light energy y emitted from an object	without regard		
41.		portant electrical parame ation of Diesel Generator		to be monitor	ed, among the following
	a) voltage and c) power facto	d ampere or and ampere	b) <u>kW and k</u> d) kVA and		
42.	consuming 1		oil. If the speci	fic fuel consur	power factor 0.8. It is nption of this DG set is t at 0.88 PF?
	a) <u>682 kVA</u>	b) 800 kVA	c) 750 kVA	d) nor	ne of the above
43.	The maximur capacity of th		veen phases s	hould not exc	eed % of the
	c) <u>10</u>	b) 5	c) 1	d) non	e of the above
44.	The capacity of DG set	of largest motor that can	be started in the	ne given DG s	et is of kVA rating
	a) 25%	b) <u>50%</u>	c)75%	d)100°	%
45.	accounts for 3	oling water in a diesel er 30% of the engine input of alorific value of 10,000 kg	energy. What w		
	a) <u>43</u> b)	12.9 c) 17.	3 d) r	one of the abo	ove
46.	Select the inc	correct statement:			
		occur as spikes at interv			supply frequency
		are not multiples of the footors are not the majors			
		rs operating near saturat			
47.		of centrifugal fan is redu % of its rated power:	ced to 80% of	its rated speed	d then the power drawn
	a) 80%	b) 51.2 %	c) 40 %	d) 64 %	
48.	The order of i	movement of thermal end	ergy in HVAC s	ystem is:	
	b) Chilled wat c) Indoor air -	Condenser water - Chill ter - Indoor air - Refrigera Chilled water - Refrigera Chilled water - Refriger	ant-Cooling tow ant-Condenser	ver - Condense water- Cooling	er water g tower
49.		f the following device with capacitor switching?	vill help to elim	ninate the hun	nting problems normally

Marks: $10 \times 5 = 50$

	a) Maximum Demand Controller c) Soft Starter	b) Intelligent Power Factor Controller (IPFC) d) Eddy Current Drives		
50.	The occupancy sensors in a lighting installation are best suited for			
	a) conference halls c) entrances of offices/buildings	b) large production shops/hangars d) street lighting		

...... End of Section – I

Section - II: SHORT DESCRIPTIVE QUESTIONS

- (i) Answer all Ten questions
- (ii) Each question carries Five marks
- S-1 A 37 kW, 3 phase, 415 V induction motor draws 56 A and 33 kW power at 410 V . What is the Apparent and Reactive Power drawn by the motor at the operating load?

Ans:

Apparent power = $1.7321 \times 0.410 \times 56 = 39.769 \text{ kVA}$ Reactive power = squrt (apparent power ²- active power²)

Active power = 33 kW

Therefore reactive power = sqrt (1581.57-1089)

= 22.19 kVAr

S-2 Compute AT & C (Aggregate Technical and Commercial) Losses for the following data:

S. No.	Description		Annual Data
1	Input Energy = (Import-Export), MU	Ei	20
2a	Energy Billed (Metered), MU	E1	16
2b	Energy Billed (Un-Metered), MU	E2	1
2c	Total Energy Billed (E1 + E2)	Eb	17
3	Amount Billed (Rs. lakhs)	Ab	800
4a	Gross Amount Collected (Rs. lakhs)	AG	820
4b	Arrears Collected (Rs. lakhs)	Ar	40

Ans:

Estimation of AT & C Losses					
S. No.	Description		Annual Data		
1	Input Energy = (Import-Export), MU	Ei	20		
2a	Energy Billed (Metered), MU	E1	16		
2b	Energy Billed (Un-Metered), MU	E2	1		
2c	Total Energy Billed (E1 + E2)	Eb	17		
3	Amount Billed (Rs. lakhs)	Ab	800		
4a	Gross Amount Collected (Rs. lakhs)	AG	820		
4b	Arrears Collected (Rs. lakhs)	Ar	40		
4c	Amount Collected without Arrears (Rs. lakhs)	Ac=AG-Ar	780		
5	Billing Efficiency (BE)	= Eb/Ei *100%	85%		

6	Collection Efficiency(CE)	=Ac/Ab *100%	97.5%
7	AT& C Loss	{1- (BE *CE) *100%	17.12%

S-3 Define Range, approach and effectiveness in cooling tower operation

Ans:

- i) "Range" is the difference between the cooling tower water inlet and outlet temperature.
- ii) "Approach" is the difference between the cooling tower outlet cold water temperature and ambient wet bulb temperature. Although, both range and approach should be monitored, the 'Approach' is a better indicator of cooling tower performance.
- iii) Cooling tower effectiveness (in percentage) is the ratio of range, to the ideal range, i.e., difference between cooling water inlet temperature and ambient wet bulb temperature, or in other words it is = Range / (Range + Approach).
- S-4 As Energy Manager, what are all the factors you look into for energy saving in operating DG Sets.?

Ans:

- 1. Ensuring steady load conditions on the DG set & providing cold and dust free intake air
- 2.Improving air filtration
- 3.Ensuring fuel oil storage, handling and operation as per manufacturer's guidelines/oil company's data
- 4. Consideration of fuel oil additives
- 5. Calibration fuel injection pumps periodically
- 6.Ensuring compliance with maintenance check lists
- 7. Ensuring balanced electrical loading
- 8.In case of a base load operations, consideration of waste heat recovery system
- S-5 An energy audit of a fan was carried out. It was observed that the fan was delivering 18,500 Nm³/hr of air with static pressure rise of 52 mm WC. The power measurement of the 3-phase induction motor coupled with the fan recorded 3.1 kW/ phase on an average. The motor operating efficiency was assessed as 88% from the motor performance curves. What would be the fan static efficiency?

Ans:

Q = 18,500 Nm 3 / hr.= 5.1388 m 3 /sec SP = 52 mmWC η_{St} = ?

Power input to motor= 3.1x3=9.3 kW

Power input to fan shaft=9.3 x0.88=8.184 kW

Fan static $\eta = \frac{\text{Volume in } \text{m}^3/\text{sec } \text{x } \Delta P_{\text{st}} \text{ in } \text{mmWc}}{102 \text{ x} \text{ Power input to shaft}}$

= <u>5.1388 x 52</u>

102 x 8.184

- = 0.32
- = 32%
- S-6 An induced draft-cooling tower is designed for a range of 7° C. An energy manager finds the operating range as 4 °C. In your opinion what could be the reasons for this type of situation.

Ans:

- 1. There may be excess cooling water flow rate
- 2. There may be reduced heat load from the process
- 3. Some of the cooling tower cells fan is switched off
- 4. Approach may be poor because of high humid condition
- 5. Nozzles may be blocked
- S-7 State any three major differences between vapor compression refrigeration (VCR) and Vapour Absorption Refrigeration (VAR) system?
 - VCR uses electric power for the compressor as main input while VAR uses a source of heat
 - VCR uses compounds of hydrogen, fluorine and carbon as refrigerants while VAR uses water
 - VCR works under pressure while VAR works under vacuum
 - VCR has a high COP while VAR has a low COP
 - VAR requires cooling tower capacity double that of VCR
 - Any other relevant point.......
- S-8 A 180 kVA, 0.80 PF rated DG set has diesel engine rating of 210 BHP. What is the maximum power factor which can be maintained at full load on the alternator without overloading the DG set? (Assume alternator losses and exciter power requirement as 5.66 kW and there is no derating of DG set)

Ans:

Engine rated Power = $210 \times 0.746 = 156.66 \text{ kW}$

Rated power available for alternator = 156.66 - 5.66 = 151 kW

Maximum power factor possible = 151/180 = 0.84

..... End of Section - II

Marks: $5 \times 10 = 50$

Section - III: LONG DESCRIPTIVE QUESTIONS

(i) Answer all Five questions

(ii) Each question carries Ten marks

L-1 During an energy audit following data were obtained on a 3 phase induction motor:

Rated values: 37 kW,415V, 66 A,0.88 pf Operating values: 410 V, 49A, 0.76 pf

Note: Motor efficiency in this particular case does not change between 50 -100 % loading.

The plant operates for 7000 hours per year with the electricity cost of Rs. 6.00 per unit.

It is proposed to replace the existing motor by a 30 kW energy efficient motor with 92% efficiency.

- a) Determine the rated efficiency and the loading of the existing motor.
- b) Calculate the loading with energy efficient motor.
- c) If replacing the existing motor with energy efficient motor which costs Rs.75,000, determine the pay back period for the investment required for the energy efficient motor over the existing motor. Consider the salvage value of the existing motor as Rs.10,000/.

	T
Rated input power	1.732 × 0.415 × 66× 0.88
	41.746 kW
Rated efficiency of the motor	37/ 41.746
	88.63%
Actual input power drawn	$1.732 \times 0.410 \times 49 \times 0.76$
	26.44 kW
Loading of the motor	26.44/41.746 = 0.633 or 63.3%
Shaft power or motor output	37x0.633= 23.44 kW
Energy efficient motor rating	30 kW
Actual output required	23.44 kW
% loading of the motor	23.44/30
	78 %
Annual energy savings	23.44(1/0.8863 – 1/0.92) x 7000 x Rs.6
	Rs.40,740/-
Payback period	(75,000-10,000)/40740
	1.59 years

L-2 (a) A 3 phase, 415 V, 75 kW induction motor is drawing 48 kW at a 0.7 PF.

Calculate the capacitor rating requirements at motor terminals for improving PF to 0.95. Also, calculate the reduction in current drawn and kVA reduction, from the point of installation back to the generating side due to the improved PF at operating voltage of 415 V.

- (b) A process plant consumes of 2,00,000 kWh per month at 0.9 Power Factor (PF). What is the percentage reduction in distribution losses per month if PF is improved up to 0.96 at load end?
 - a) $kVAr Rating = kW [Tan \phi 1 tan \phi 2]$

$$\cos \phi 1 = 0.70, \ \phi 1 = \cos (inv) \ 0.70 = 45.57, \ Tan \ \phi 1 = 1$$

$$\cos \phi 2 = 0.95$$
, $\phi 2 = \cos (inv) \ 0.95 = 18.2$, $\tan \phi 2 = 0.329$

$$kVAr Rating = 48 kW (1 - 0.329)$$

= 32.2 kVAr

Current drawn at 0.7 PF = $48 / \sqrt{3} \times 0.415 \times 0.7$

= 95.4 A

Current drawn at 0.95 PF = $48 / \sqrt{3} \times 0.415 \times 0.95$

= 70.3 A

Reduction in current drawn = 95.4 - 70.3

= 25.1 A

Initial kVA at 0.7 PF = 48/0.7

= 68.57 kVA

kVA at 0.95 PF = 48 / 0.95

= 50.52 kVA

Reduction in kVA = 68.57 - 50.52

= 18.05 kVA

(OR)

Reduction in kVA = $(\sqrt{3} \text{ VI})_{old} - (\sqrt{3} \text{ VI})_{new}$

 $= (\sqrt{3} \times 0.415 \times 95.4) - (\sqrt{3} \times 0.415 \times 70.3)$

= 68.57 - 50.52 = 18.05 kVA

(OR)

Reduction in kVA = $1.7321 \times 0.415 \times reduction$ in current

 $= 1.7321 \times 0.415 \times 25.1$

= 18.04 kVA

b) % Reduction in distribution losses = $[-P_1/P_2]$

 $= [1-(0.9/0.96)^2]$

= 0.121

= 12.1 %

L-3 The measured values of a 20 TR package air conditioning plant are given below:

Average air velocity across suction side filter: 2.5 m/s

Cross Sectional area of suction: 1.2 m²

Inlet air = Dry Bulb:20°C, Wet Bulb: 14°C, Enthalpy: 9.37 kcal/kg Outlet air = Dry Bulb: 12.7 °C, Wet Bulb: 11.3 °C; Enthalpy: 7.45 kcal/kg

Specific volume of air: 0.85 m³/kg

Power drawn: by compressor: 10.69 kW

by Pump: 4.86 kW

by Cooling tower fan: 0.87 kW

Calculate:

- i. Air Flow rate in m³/hr
- ii. Cooling effect delivered in kW
- iii. Specific power consumption of compressor in kW/TR
- iv. Overall kW/TR
- v. Energy Efficiency Ratio in kW/kW

Ans:

- i. Air flow rate = $2.5*1.2 = 3 \text{ m}^3/\text{sec} = 10800 \text{ m}^3/\text{hr}$
- ii. Cooling Effect delivered = [(9.37-7.45)*10800]/(0.85*3024) = 8.07 TR = 28.32 kW
- iii. Compressor kW/TR = 10.69/8.07 = 1.32
- iv. Overall kW/TR = (10.69+4.86+0.87)/8.07 = 2.04
- v. Energy Efficiency Ratio(EER) in kW/kW = 28.32/10.69 = 2.65
- L-4 List five energy conservation measures each for any two of the following
 - a) Energy use in buildings
 - b) Compressed air system
 - c) Pumps and pumping systems
 - d) Lighting systems

Ans:

a) Energy use in buildings

 Weather-stripping of Windows and Doors: Minimise exfiltration of cool air and infiltration of warm air through leaky windows and doors by incorporating effective means of weather stripping. Self-closing doors should also be provided where heavy traffic of people is anticipated.

- Temperature and Humidity Setting: Ensure human comfort by setting the temperature to between 23°C and 25°C and the relative humidity between 55% to 65%.
- Chilled Water Leaving Temperature: Ensure higher chiller energy efficiency by maintaining the chilled water leaving temperature at or above 7° C. As a rule of thumb, the efficiency of a centrifugal chiller increases by about 2¼ % for every 1° C rise in the chilled water leaving temperature.
- Chilled Water Pipes and Air Ducts: Ensure that the insulation of the chilled water pipes and ducting system is maintained in good condition. This helps to prevent heat gain from the surroundings.
- Chiller Condenser Tubes: Ensure that mechanical cleaning of the tubes is carried out at least
 once every six months. Fouling in the condenser tubes in the form of slime and scales reduces
 the heat transfer of the condenser tubes and thereby reducing the energy efficiency of the
 chiller.
- Cooling Towers: Ensure that the cooling towers are clean to allow for maximum heat transfer so that the temperature of the water returning to the condenser is less than or equal to the ambient temperature.
- Air Handling Unit Fan Speed: Install devices such as frequency converters to vary the fan speed. This will reduce the energy consumption of the fan motor by as much as 15%.
- Air Filter Condition: Maintain the filter in a clean condition. This will improve the heat transfer between air and chilled water and correspondingly reduce the energy consumption.

b) Compressed Air Systems

- Ensure air intake to compressor is not warm and humid by locating compressors in well-ventilated area or by drawing cold air from outside. Every 4°C rise in air inlet temperature will increase power consumption by 1 percent.
- Clean air-inlet filters regularly. Compressor efficiency will be reduced by 2 percent for every 250 mm WC pressure drop across the filter.
- Compressed air piping layout should be made preferably as a ring main to provide desired pressures for all users
- Compressed air leakage of 40- 50 percent is not uncommon. Carry out periodic leak tests to estimate the quantity of leakage.
- Install equipment interlocked solenoid cut-off valves in the air system so that air supply to a
 machine can be switched off when not in use.
- Present energy prices justify liberal designs of pipeline sizes to reduce pressure drops.
- If pressure requirements for processes are widely different (e.g. 3 bar to 7 bar), it is advisable
 to have two separate compressed air systems.
- Reduce compressor delivery pressure, wherever possible, to save energy.

- Retrofit with variable speed drives in big compressors, say over 100 kW, to eliminate the 'unloaded' running condition altogether.
- Keep the minimum possible range between load and unload pressure settings.
- Automatic timer controlled drain traps wastes compressed air every time the valve opens. So frequency of drainage should be optimized.
- A smaller dedicated compressor can be installed at load point, located far off from the central compressor house, instead of supplying air through lengthy pipelines.
- Misuse of compressed air such as for body cleaning, agitation, general floor cleaning, and other similar applications must be discouraged in order to save compressed air and energy
- Pneumatic transport can be replaced by mechanical system as the former consumed about 8 times more energy.

c) Pumps & Pumping Systems

- Ensure adequate NPSH at site of installation
- Operate pumps near best efficiency point.
- Modify pumping system and pumps losses to minimize throttling.
- Adapt to wide load variation with variable speed drives or sequenced control of multiple units.
- Stop running multiple pumps add an auto-start for an on-line spare or add a booster pump in the problem area.
- Use booster pumps for small loads requiring higher pressures.
- Increase fluid temperature differentials to reduce pumping rates in case of heat exchangers.
- Repair seals and packing to minimize water loss by dripping.
- Balance the system to minimize flows and reduce pump power requirements.
- Avoid pumping head with a free-fall return (gravity); use siphon effect to advantage.
- Conduct water balance to minimise water consumption
- In the case of over designed pump, provide variable speed drive, or downsize / replace impeller or replace with correct sized pump for efficient operation.
- Replace old pumps by energy efficient pumps
- Reduce system resistance by pressure drop assessment and pipe size optimisation

d) Lighting System

- Switch off Lights When Not In Use
- Provision of Separate Switches for Peripheral Lighting: A flexible lighting system, which made use of natural lighting for the peripherals of the room.

- Install High Efficiency Lighting System: Use lamps with high luminous efficacy. For example, replacing incandescent bulbs with compact fluorescent lamps can reduce electricity consumption by 75% without any reduction in illumination levels.
- Fluorescent Tube Ballasts: The ballast losses of conventional ballast and electronic ballast are 12W and 2W respectively. Hence, consider the use of electronic ballast for substantial energy savings in the lighting system.
- Lamp Fixtures or Luminaires: Optical lamp luminaries made of aluminum, silver or multiple dielectric coatings have better light distribution characteristics. Use them to reduce electricity consumption by as much as 50% without compromising on illumination levels.
- Cleaning of Lights and Fixtures: Clean the lights and fixtures regularly. For best results, dust at least four times a year.
- Use Light Colors for Walls, Floors and Ceilings: The higher surface reflectance values of light colors will help to make the most of any existing lighting system.
- Lighting controls like timer controls, day light controls, voltage controllers, occupancy sensors, switching controls, PLC controls can be adopted.

L-5 Fill in the blanks for the following:

- 1. One ton of refrigeration (TR) is equal to 3.516 kW.
- A four pole 15kW induction motor operating at 50 Hz, with 1% slip will have rotor input power of 15.15 kW
- A Pitot tube is used to measure total pressure and static pressure to determine <u>velocity</u> pressure of the fluid
- 4. In case of centrifugal pumps, impeller diameter changes are generally limited to reducing the diameter to about <u>75</u>% of maximum size.
- 5. The value, by which the pressure in the pump suction exceeds the liquid vapour pressure, is expressed as Net Positive Suction Head Available (NPSHA).
- The parameter used by ASME to define fans, blowers and compressors is <u>Specific ratio</u>.
- 7. It is possible to run pumps in parallel provided their closed valve heads are similar.
- 8. If the evaporation loss is 16 cubic meters per cell and Cycles of Concentration is 3, the blow down requirement per cell of a cooling tower is <u>8 cubic meters per cell</u>
- 9. A centrifugal pump raises water to a height of 12 metre. If the same pump handles brine with specific gravity of 1.2, the height the brine will be raised to is 12 metres or the same height
- 10. Installing the capacitor near motor terminals will increase the design power factor of the motor True / False (False)

- L 6: a) The suction head of a pump is 3 m below the pump centerline. The discharge pressure is 2.8 kg/cm². The flow rate of water is 120 m³ /hr. Find out the pump efficiency if the actual power input of the connected motor is 15.0 kW with an operating efficiency of 0.90.
 - b) A V-belt driven reciprocating instrument air compressor was found to be maintaining a distribution system pressure of 7 kg/cm²g. 20% of the instrument air was used for control valves installed in a boiler house and requiring 6.5 kg/cm²g, whereas balance 80% of the instrument air was used for other application requiring 2 kg/cm²g. What would you like to advice in this situation?

Ans:

a)

Discharge Head : 2.8 kg/cm² equals 28 metre head.

Suction Head : - 3 metre.

Total Head : 28 - (-3) = 31 metre.

Hydraulic power $P_h = Q (m^3/s) x Total head, h_d - h_s (m) x \rho (kg/m^3) x g (m/s^2) / 1000$

Hydraulic Power : $((120/3600) \times 1000 \times 9.81 \times 31) / 1000 = 10.137 \text{ kW}$

Pump Efficiency : $(10.137 \times 100) / (15 \times 0.9) = 75\%$

b) It is advisable to

- 1) Provide a separate small air compressor operating at 7 kg/cm² g near the control valves and reduce the existing distribution system pressure from 7 kg/cm²g to 2 kg/cm²g for pneumatic instrument
- 2) Since there will be reduced leakage loss due to reduced system pressure, the compressor unloading may begin due to reduced demand. Reduce appropriately the motor pulley size in order to match the capacity

...... End of Section - III

Marks: $50 \times 1 = 50$

14th NATIONAL CERTIFICATION EXAMINATION 2013 FOR ENERGY MANAGERS & ENERGY AUDITORS

PAPER – 3: Energy Efficiency in Electrical Utilities

Date: 25.08.2013 Timings: 0930 – 1230 HRS Duration: 3 HRS Max. Marks: 150

Section – I: OBJECTIVE TYPE

- (i) Answer all **50** questions
- (ii) Each question carries one mark
- (iii) Please hatch the appropriate oval in the OMR answer sheet with HB Pencil, as per instructions

1.	The gross efficiency of a coal based power generating unit with a gross heat rate of 2490 kcal/kWh is				
	a) 40%	<u>b) 34.5 %</u>	c) 33.3%	d) 45.2%	
2.	respectively.	The percentage loss of	f the distribution syste	stems are 40%, and 97% em of the same network is and distribution system is	
	a)8,92 %	<u>b) 29.87</u> %	c) 40 %	d) 23%	
3.	The rating of power factor correction capacitors at induction motor terminals should be a) 90% of no load magnetizing kVAr of induction motor b)100 % of no load magnetizing kVAr of induction motor c) 80% of no load magnetizing kVAr of induction motor d) none of the above				
4.	Select the correct statement: Power factor a) is the ratio of active and reactive power b) is the ratio of reactive and apparent power c) is the ratio of active and apparent power d) of a pure inductive and capacitive load is unity				
5.	Code (ECBC)) and as defined in the E	nergy Conservation Ac		
	a) <u>kWh per s</u> c) kW per squ	quare meter per year uare meter	b) kWh pe d) kWh pe	er square meter r year	

6.	If the maximun by kVA			0.88 p.f., the	maximum dem	and will reduce
	a) 3143	b <u>) 357</u>	c) 3897	d) maxim	num demand wil	not reduce
7.	The performan		ing of an induct	tion motor ca	n be assessed	by which of the
	a) no load curre c) load current		b) stator resista d) <u>both no load</u>	•	se stator resistance	per phase
8.			of 1500 rpm, numbe		nains frequency	of 50 Hz, the
	a) 8	b)	6	c) 4	d) 2
9.		0%, draws 9			induction moto wer. The percer	
	a) <u>55.2 %</u>	b) 61.3	3 %	c) 67.5 %	d) none c	of the above
10.					otor is 42.3 kW. al power develop	
	a) 42.3 kW	b) 41.7	<u>'5</u> kW	;) 5.48 kW	d) 47.79 kV	V
11.		kVA for 20			30 minutes is 50 minutes, the M	
	a) 5000 kVA	b) 3	400 kVA	c) 2920 k	<u>(VA</u>	d) 1800 kVA
12.					erminals for a 3 ame sized induc	
	a) more	b) <u>less</u>	c) s	ame	d) sometime le	ess or more
13.	Which paramet slip method neg			assess the p	ercentage loadir	ng of a motor by
	a) motor speed c) operating m		and frequency		ynchronous spe perating current	ed
14.	Isothermal pow	er of a comp	ressor depends	on		
	a) absolute int		e		ressure ratio	

15.	Reduction in the delivery pressure of an air compressor working at 7 bar, by 1 bar would reduce the power consumption by								
	a) 2 – 3 %	b) 4-5 %	С) <u>6 - 10 %</u>	<u>D</u>	d)	none of the a	oove	
16.	Which of the	following is corre	ect for air	compres	sors?				
	 a) for every 5.5°C drop in the inlet air temperature, the increase in energy consumption is by 2% b) for every 4°C rise in the inlet air temperature, the increase in energy consumption is by 1% c) for every 4°C rise in the inlet air temperature, the decrease in energy consumption is by 1% d) the energy consumption remains same irrespective of inlet air temperature 								
17.	The Free Air	Delivery of a recipro	ocating air	compres	sor is dire	ectly p	proportional to		
	a) speed	b) pressure	c)	volume	(d) all d	of the above		
18.		ese desiccant co the desiccant?	mpressed	air drye	ers uses	dry	compressed	air	for
	a) blower rea c) heat of cor	ctivated type npression type			eatless p of the ab		type		
19.	The unit of sp	pecific humidity in a	psychromo	etric char	t is				
		isture/kg of dry ai sture/kg of air	<u>r</u>		moisture I of the at		entage in air		
20.		a vapour compress an operating efficier							
	a) 8.2	b) 9.3	C	c) <u>7.2</u>	d) none	e of the above	<u>;</u>	
21.		enters an evapora easured as 200 m ³ /						of chill	led
	<u>a) 265</u>	b) 200		c) 661	d)	2.65			
22.	In an air cond the enthalpy	ditioning system and of air?	alysis whic	h one ten	nperature	is su	fficient to dete	rmine)
	a) dry bulb te c) ambient te	•			et bulb to one of the				
23.	The head ger	nerated by a centrif	ugal pump	is:					
	b) directly pro c) inversely p	ent of the density opportional to the der roportional to the deal to the deal to the square of t	nsity of the ensity of th	liquid be le liquid b	ing pump eing pum	ed iped	ped		

24.	The driving force for refrigeration in a vapour absorption refrigeration system is				
	a) mechanical energy	b) electrical energy			
	c) thermal energy	d) chemical energy			
25.	Which of the following happens to	air when it is cooled through evaporation process?			
	a) humidity ratio of the air decreas b) dry bulb temperature of air de c) dry bulb temperature of air incre d) enthalpy of outlet air is less that	ecreases eases			
26.	The relation between COP and kV	//TR for a refrigeration system is given by			
	a) <u>kW/TR</u> = 3.516/COP c) kW/TR = 860/COP	b) kW/TR = COP /3.516 d) none of the above			
27.	In which of the following fans the a discharge?	ir does not change flow direction from suction to			
	a) tube axial fan b) vane axia	al fan c) propeller fan <u>d) all of the above</u>			
28.	The parameter used by ASME to	classify fans, blowers and compressors is			
	a) volume ratio b) specific	ratio c) blade ratio d) impeller ratio			
29.	The pressure to be considered for is	calculating the power required for centrifugal fans			
	a) vapour pressure	b) dynamic pressure			
	c) total static pressure	d) velocity pressure			
30.	The inclined manometer connecte in a gas stream?	d to a pitot tube is used for measuring which pressure			
	a) velocity b) static	c) total <u>d) all of the above</u>			
31.		riving a pump is 20 kW at a 91% efficiency, and the set is 12.5 kW, the pump efficiency will be			
	a) <u>68.7%</u> b) 62.5%	c) 56.8% d) none of the above			
32.	Which of the following is not true f	or impeller trimming?			
	a) <u>pressure ۞ diameter</u> c) power ۞ diameter³	b) head ⊙ diameter ² d) flow ⊙ diameter			
33.	If the speed of the pump is double	<u> </u>			
	a) 2 times b) 6 times	c) 8 times d) 4 times			
34.	The preferred method of flow cor system is	trol for reducing pump flow permanently in a pumping			
	a) throttling b) speed control	c) <u>impeller trimming</u> d) none of the above			

35.	A water pump is delivering 20 m³/hr at ambient conditions. The impeller diameter is trimmed by 10%. This will reduce the pump discharge by			
	a) 18 m³/hr	b) <u>2 m³/hr</u>	c) 0.2 m ³ /hr	d) none of the above_
36.	Increasing the s	suction pipe diame	eter in a pumping sys	tem will
	a) reduce NPSF c) decrease NP			crease NPSHA crease NPSHR
37.		cooling tower with d wet bulb temper		erature as 41°C and 32°C
	<u>a) 9°C</u>	b) 3°C	c) 29°C	d) 12°C
38.				om the mains water supply), E = n and D = drift losses of a cooling
	•		<i>,</i>	E - B + D d) M = E - B - D
39.	If the wet bulb to	emperature of air	is 38°C, then its related	tive humidity in % is
	a) 38 %	b) 90%	c) 100%	<u>d) insufficient data</u>
40.		wer if blowdown is loss is equal to:	s 10 m³ /hour and Cy	cles of Concentration (CoC) is 2.5
	a) 25 m³/hour	<u>b) 15 m³/ hour</u>	c) 0.25 m³/hou	ur d) 6.67 m³/hour
41.	If the metered I	kWh is 95, kVAh	is 100 and kVARh is	31, the power factor will be:
	<u>a) 0.95</u>	b) 0.61	c) 0.69	d) unity
42.	In T-5 Fluoresco	ent Lamp, "5" is in	dicative of:	
	a) Tube diame t	<u>ter</u>	b) 5	watt loss
	c) 5% Energy S	Saving with respec	ct to T8 d) 5	5 th generation lamp
43.	Identify the state	ement that is not a	applicable to heat pur	nps
	b) an air conditi c) no external	oner can work as energy is require	a heat pump	oration and condensation
4.4	, .	<u> </u>	on system can also w	<u>·</u>
44.	efficient?	system using wn	ich of the following	compressors is likely to be most
	a) reciprocating	b) screw	c) <u>scroll</u>	d) all the above
45.	Which of the fol	lowing is not true	for a fluorescent lamp	with electronic ballast
	a) presence of c) increased light	stroboscopic ef		ergy savings starter required

Marks: $8 \times 5 = 40$

46.	Which of the following with respect to turbocharger in a Diesel engine is true?			
	a) operates using energy of exhaust gases b) decreases supply air pressure to engine c) preheats the combustion air using energy from exhaust gases d) all of the above			
47.	The refrigerant which can be used both in vapour compression chillers and vapour absorption chiller is			
	a) R22	b) R21	c) ammonia	d) pure water
48.	Energy efficient	ent distribution transforme	er core is made up of	·
		yed iron (grain oriented) us core - metallic glass	b) cop alloy d) nor	per ne of the above
49.	In a transformer on load, if the secondary voltage is one-fourth the primary voltage, then the secondary current will be			
	l '	the primary current the primary current	, .	he primary current the primary current_
50.	If V_1 is actual supply voltage and V_2 is the rated voltage of a capacitor, the reactive KVAr produced would be in the ratio of			
	a) V ₂ ² /V ₁ ²	b) V ₁ ² /V ₂ ²	c) 1 - V_2^2/V_1^2	d) 1 + V_2^2/V_1^2

...... End of Section – I

Section - II: SHORT DESCRIPTIVE QUESTIONS

- (i) (ii)
- Answer all **Eight** questions Each question carries **Five** marks

S-1	A 15 kW, 415 V, 4 pole, 50 Hz, 3 Phase squirrel cage induction motor has a full load efficiency of 92% and power factor of 0.89. Find the following if the motor operates at full load rated values. a) input power in kW b) current drawn by the motor c) RPM at a full load slip of 0.8%
Ans:	a) P _{in} (Input power) = 15 / 0.92 = 16.304 kW
	b) I(Input current) = 16.304 / ((3) x 0.415 x 0.89) = 25.48 A
	c) Ns = 120 x f / p = 120 x 50 / 4 = 1500 RPM
	N = Ns (1- S) = 1500 (1-0.008)
	= 1488 RPM
S-2	In a pumping system the water level is 4 m below the pump centerline. The discharge

	pressure is 2.60 kg/cm ² . The flow rate of water is 1.5 m ³ /min. Find out the pump efficiency if the actual power drawn by the pump motor is 14 kW at a motor operating efficiency of 0.88.			
Ans	Discharge Head = =	2.60 kg/cm ² 26 metre head.		
	Suction Head =	- 4 metre.		
	Total Head =	26 – (-4) = 30 metre		
		(1.5/60) x 1000 x 9.81 x 30/1000 7.36 kW		
	Shaft input =	14x.88=12.32		
	Pump Efficiency =	100 x 7.36/12.32 = <u>59.74 %</u>		
S-3	Harmonic measurements in an e following results.	lectrical system of an industry gave the		
	Current at 50 Hz : 300 A			
	Current at 150 Hz : 42 A			
	Current at 250 Hz : 33 A			
	Calculate the Total Harmonic Dis	stortion in current for the system.		
Ans	$I_{THD} = \sqrt{\frac{42}{300}} \sqrt[2]{\frac{42}{300}} \sqrt[2]{\frac{2}{300}} \sqrt[2]{\frac{2}{300}} \times 100$			
	$\sqrt{0.0196} \ 0.0121 \ x \ 100 \ 17.8\%$			
S-4	Air flow measurements using the p gave the following data	pitot tube, in the primary air fan of a coal fired boiler		
	Air temperature Velocity pressure Pitot tube constant, Cp Air density at 0°C (standard data)	= 38°C = 47 mmWC = 0.9 = 1.293 kg /m ³		
	Find out the velocity of air in m/sec.			
Ans	Corrected air density	273 x 1.293 /(273+38) 1.135 kg/m ³		
	Velocity m/s	Cp x √2 x 9.81 x Δp x γ / γ		
		0.9 x √2 x 9.81 x 4		

			25.6 m/s			
		x 1.135 / 1.135	20.0 11//3			
		X 1.100 / 1.100				
S-5		re measures to reduce energy consumptio	n in lighting system for buildings,			
	indust	ry and street lighting				
Ans	① ①	Reduce excessive illumination levels to standard levels using switching, delamping, etc. (Know the electrical effects before doing delamping.) Aggressively control lighting with clock timers, delay timers, photocells, and/or				
		occupancy sensors.	•			
	()	Install efficient alternatives to incandescent Efficiency (lumens/watt) of various technolog as follows: low pressure sodium, high press mercury vapor, incandescent.	gies range from best to worst approximately			
	O	Select ballasts and lamps carefully with high mind.	n power factor and long-term efficiency in			
	(P)	Upgrade obsolete fluorescent systems to Co Consider lowering the fixtures to enable using				
	<u> </u>	Consider daylighting, skylights, etc.	ig 1655 of them.			
	()	Consider painting the walls a lighter color ar	nd using less lighting fixtures or lower			
		wattages.	una in a Air in			
		Use task lighting and reduce background illu Re-evaluate exterior lighting strategy, type,				
	0	Change exit signs from incandescent to LEI				
		Onlinge exit signs from incandescent to LLD.				
S-6	Identify each of the following statement as applicable to Vapor Compression Refrigeration System (VCR) and to Vapor Absorption Refrigeration System(VAR). (Need not copy and write the following statements in the Answer book; only write against the statements A, B, C, D etc. whether it is applicable to VCR or VAR)					
		No effect of reducing the load on perform Uses low grade energy	nance.			
		Liquid traces in suction line may damage	e the compressor.			
		Moving parts are only in the pump and he				
	E.	The system can work on lower evaporate COP.	or pressures also without affecting the			
		Performance is adversely affected at part				
		Liquid traces of refrigerant present in pip				
	H. I.	 H. Using high-grade energy like mechanical work I. Moving parts are more; therefore, more equipment maintenance and noise 				
	J.	The COP decreases considerably with de				
Ans		A. VAR	-			
		B. VAR C. VCR				
1		D. VAR				
		E. VAR				
		E. VAR F. VCR				
		E. VAR				

	I. VCR J. VCR				
S-7	List any five factors that affect the rate of evaporation of water in cooling towers				
	Amount of water surface area exposed				
	① The time of exposure				
	① The relative velocity of air passing over the droplets				
	① The RH of air				
	① The direction of airflow relative to water.				
	Any other relevant point to be considered				
S-8	Estimate the cooling tower capacity (TR) and approach with the following parameters				
	Water flow rate through CT = 2 m³/min				
	Specific heat of water = 1 kcal/kg °C				
	Inlet water temperature = 43 °C				
	Outlet water temperature = 35 °C Ambient WBT = 30°C				
	Ambient WB1 = 30 C				
Ans	Cooling tower capacity (TR) = (flow rate x density x sp.heat x diff. temp)/ 3024				
	= (2X60) x 1000 x 1.0 x (43-35)/ 3024				
	= 317.5TR				
	Approach = 35- 30 = 5°C				

...... End of Section - II

Section - III: LONG DESCRIPTIVE QUESTIONS

- (i) Answer all <u>Six</u> questions(ii) Each question carries <u>Ten</u> marks

L-1	An efficiency assessment test was carried out for a standard 4 pole squirrel cage induction motor in a chemical plant. The motor specifications are as under:				
	Motor rated specification: 3 phase delta connected,37 kW, 415 Volt, 63 Amps, 1475 rpm, The following data was collected during the no- load test on the motor:				
	Voltage= 415 Volts				
	Current = 17 Amps				
	Frequency = 50 Hz Stator resistance per phase = 0.260 Ohms at 30°C				
	No load power= 1152 Watts				
	Calculate the following:				
	(i) Iron plus friction and windage losses.				
	(ii) Stator resistance at 120°C.				
	(iii) Stator copper loss at full load at operating temperature of 120°C.				

Marks: $6 \times 10 = 60$

- (iv) Full load slip and rotor input assuming rotor losses are slip times rotor input.
- (v) Motor input assuming that stray losses are 0.5% of the motor rated output power.
- (vi) Motor full load efficiency

Ans

Let Iron plus friction and windage loss, Pi + fw

No load power, PnI = 1152 Watts

Stator Copper loss, P st-30°C (Pst.cu)

 $= 3 \otimes (17 / \square)^2 \otimes 0.260$

= 75.13Watts

 $Pi + fw = P_{nl} - Pst.cu$

= 1152 - 75.13

= 1076.87 W

(ii) Stator Resistance at 120°C,

$$R_{120}{}^{0}_{C} = 0.260 \Leftrightarrow \frac{120 \, \Box \, 235}{30 \, \Box \, 235}$$

= 0.3483 ohms per phase

(iii) Stator copper losses at full load, Pst.cu 120°C

= 1382.3 Watts

(iv) Full load slip

$$S = (1500 - 1475) / 1500$$

= 0.01666 or 1.66%

(v) Motor full load input power, P input

$$= P_r + Pst.cu 120^{\circ}C + (P_i + fw) + P_{stray}$$

$$= 37626.86 + 1382.3 + 1076.87 + (0.005^{\circ} \otimes 37000)$$


= 40271.03 Watts

*where, stray losses = 0.5% of rated output (assumed)

(vi) Motor efficiency at full load

Efficiency =
$$\frac{P_{output}}{P_{input}} $100$$

	= (37000 / 40271.03) x 100
	= 91.87 %
L2	Fill in the blanks:
	Cavitation may occur in a pump when the local static pressure in a fluid reaches a level below thepressure of the liquid at the actual temperature.
	2. In a vapour absorption system using ammonia as refrigerant, the absorbent is
	The system resistance of a fan system is proportional to theof flow rate or velocity
	4. If the dry bulb temp.is 30°C and the wet bulb temp. is 30°C, then the % relative humidity will be
	5. Slip ring induction motors are comparativelyefficient than of the squirrel cage motors of same ratings.
	6. In a pumping system with a horizontal discharge, the suction static head is 3 m and the friction head is 21 m. The total head developed by the pump will be
	7. The lowest theoretical temperature to which water can be cooled in a cooling tower is the of atmospheric air
	8. The measure of illuminance of a surface in metric units is
	9. It is acceptable to run pumps in parallel provided theirheads are similar
	10. When heat load, range and wet bulb temperature are held constant, the cooling tower size isproportional to the approach.
Ans	
	1. Vapour 2. Water
	3. Square
	4. 100%
	5. Less 6. 18 m
	7. Wet bulb temperature
	8. Lux
	9. Closed valve heads 10. Inversely
L-3	The cooling water circuit of a process industry is depicted in the figure below. Cooling water is pumped to three heat exchangers via pipes A,B and C where flow is throttled depending upon the requirement. The diameter of pipes and measured velocities with non-contact ultrasonic flow meter in each pipe are indicated in the figure.

The following are the other data:

Measured motor power: 50.7 kW

Motor efficiency at operating load: 90% Pump discharge pressure: 3.4 kg/cm²

Suction head: 2 meters

Determine the efficiency of the pump

Ans	Flow in pipe A	22/7 x (0.1) ² /4 x 1.5	
		0.011786 m³/s	
	Flow in pipe B	22/7 x (0.1) ² /4 x 1.8	
		0.014143 m³/s	
	Flow in pipe C	22/7 x (0.2) ² /4 x 2.0	
		0.062857 m³/s	
	Total flow	0.088786 m³/s	
	Total head	34 m – 2 m = 32 m	
	Pump hydraulic power	0.088786 x 32 x 9.81	
		27.9 kW	
		27.9 x 100/50.7 x 0.9	
	Pump efficiency	61 %	

a) The size of an engine room to be ventilated is 30 m x 20 m x 5 m. The number of air changes per hour is designed to be 20. If the static pressure rise across the ventilator fan is 15 mm WC and fan efficiency is 70 % find out the motor power drawn at a motor efficiency of 90%.

L4

b) A seal air fan for a coal mill is operating with suction damper in 25 % open condition.
The power drawn at 50 Hz by fan motor is 120 kW. A VFD is to be installed eliminating
the damper operation. It is found that the damper can be completely opened and the
fan motor can be operated at 33 Hz. Calculated the power drawn by the fan motor at
33 Hz, assuming that motor and fan efficiency remains constant.

a) Flow rate $-30 \times 20 \times 5 \times 20 = 60,000 \text{ m}^3/\text{hr}$

Motor power $-(60,000/3600) \times 15/(102 \times 0.7 \times 0.9)$

- 3.89 kW

b) Power at 50 Hz - 120 kW

Power at 33 Hz - 120 x (33/50)³

- 34.5 kW

L-5 a) In an automobile industry a pump-up test was conducted to determine the free air delivery (FAD) of a reciprocating compressor and the following data were obtained:

Receiver capacity and additional holdup volume

in piping and after-cooler : 4100 litres

Initial pressure:

: 1 kg/cm² (g)

Final pressure:

: 8.5 kg/cm² (g)

Atmospheric Pressure:

: 1.026 kg/cm² (a)

Ambient air temperature: : 32 °C
Final compressed air temperature: : 52 °C
Compressor pump up time : 65 secs

Calculate the FAD of the compressor in cubic foot per minute.

- b) Further a leakage test was carried out in the same compressed air system and with the same compressor as in problem a) above and following were the observations:
 - Compressor was on load for 03 minutes
 - Compressor was unloaded for 13 minutes
 - Compressor was drawing 145 kW during load

Calculate the following:

- i. % leakage in compressed air system
- ii. Leakage quantity
- iii. Specific power consumption
- iv. Power lost due to leakage

Ans

a)

$$Q = \frac{P_2 \square P_1}{P_0} \lozenge \frac{V}{t} \lozenge \underbrace{273 \square t_1}_{273 \square t_2} \lozenge$$

Time = 65 sec=1.0833 secs

= (8.5 - 1)/1.026X 4.1 /1.0833) X (305/325)

 $= 25.96 \text{ m}^3/\text{min}$

 $= 25.96 \times (3.28)^3$

= 916 cfm

b)

i) % Leakage in the system

Load time (T) : 03 minutes
Un load time (t) : 13 minutes

% leakage in the system $\frac{T}{(T \Box t)} x 100$

 $\frac{3}{(3 \, \square \, 13)} x 100 = 18.75 \%$

ii) Leakage quantity : 0.1875 x 916

: 171.75 cfm

iii)

Operating capacity (FAD) : 916 cfm
Actual power consumption : 145 kW

Specific power consumption : 145/916

= 0.1583 kW/cfm

iv)

Power lost due to leakage : leakage quantity x sp power consumption

: 171.75 x 0.1583 : 27.19 kW

L-6 Answer any two of the following :

- (i) In a throttle valve-controlled pumping system with oversized pump list any five options to improve energy efficiency? (Note: Name only options, no explanation required)
- (ii) Define one 'Ton of Refrigeration (TR)'. How do you calculate TR across the Air Handling Units?
- (iii) List five energy conservation opportunities in fan system.

Ans

- i) Trim impeller, replace with smaller impeller, install variable speed drive, change pulley if it is belt driven, change to two speed drive, and lower rpm drive
- ii) A ton of refrigeration is defined as the quantity of heat to be removed in order to form one ton of ice in 24 hours when the initial temperature of water is 0 °C. This is equivalent to 50.4 Kcal/min or 3024 Kcal/h in metric system

Refrigeration load in TR is assessed as:

$$TR \ \blacksquare \ \frac{Q \, \lozenge \ \rho \, \lozenge \, \llbracket h_{in} \, \llbracket \ h_{out} \, \rrbracket}{3024}$$

Where Q is the air flow in CMH

X is density of air kg/m³

h in is enthalpy of inlet air kCal/kg

h out is enthalpy of outlet air kCal/kg

iii) Energy conservation opportunities in fan system

- Use smooth, well-rounded air inlet cones for fan air intakes.
- ② Avoid poor flow distribution at the fan inlet.
- ① Minimize fan inlet and outlet obstructions.
- ① Clean screens, filters, and fan blades regularly.
- Use aerofoil-shaped fan blades.
- Minimize fan speed.
- Use low-slip or flat belts.
- Check belt tension regularly.
- ① Eliminate variable pitch pulleys.
- ① Use variable speed drives for large variable fan loads.
- ① Use energy-efficient motors for continuous or near-continuous operation
- ② Eliminate leaks in ductwork.
- Minimise bends in ductwork
- Turn fans off when not needed.

..... End of Section - III

13th NATIONAL CERTIFICATION EXAMINATION – September, 2012 FOR ENERGY MANAGERS & ENERGY AUDITORS

PAPER - 3: Energy Efficiency in Electrical Utilities

Date: 16.9.2012 Timings: 0930-1230 HRS Duration: 3 HRS

Max. Marks: 150

Section – I: OBJECTIVE TYPE

Marks: $50 \times 1 = 50$

(i) Answer all 50 questions

(ii) Each question carries **one** mark

1	In a 22 kV feeder, if the voltage is raised from 22 kV to 66 kV for the same loading conditions, the voltage drop in the same feeder system would be lowered to				
	a) 1/2	<u>b) 1/3</u>	c) 1/9	d) unpredictable value	
2	Normally, the efficiency of distribution transformer at full load varies anywhere between				
	a) <u>96 to 99 %</u>	b) 80 to 85 %	c) 60 to 70%	d) 50%- 60%	
3	What is the reduction in distribution loss if the current flowing through the distribution line is reduced by 10%?				
	a)10%	b) 90%	c <u>) 19%</u>	d) 81%	
4	Power factor is th	e ratio of			
	a) kVAr/kW		b) (kW ² +	$kVAr^2$) $^{1/2}$ / kW	
	c) kW/ (kW ² +kVA	$(r^2)^{1/2}$	d) kVAr/	$(kW^2+kVAr^2)^{1/2}$	
5	The electricity bill shows an average power factor of 0.72 with an average kW demand of 627. How much kVAr is required to improve the power factor to 0.95? (Given Data: $\tan \Phi 1 = 0.964$, $\tan \Phi 2 = 0.329$)				
	a) <u>398</u>	b) 144	c) 95	d) 627	
6	Where transformer loading is known, the actual transformer loss at a given load can be computed as:				
	a) No Load Loss+ (Actual kVA Load/rated kVA) X Load Loss b) No Load Loss+ (Actual kVA Load/rated kVA) ² X Load Loss c) No Load Loss+ (Actual kVA Load/rated kVA) X Load Loss ² d) [No Load Loss+{ (Actual kVA Load/rated kVA) X Load Loss}] ²				

7	Direct current motors are used in special applications where				
	 a) high torque starting or where smooth acceleration over a broad speed range is required. b) low torque starting or where steady acceleration over a narrow speed range is required. c) normal torque starting or where high acceleration over a broad speed range is required. d) low torque starting or where smooth acceleration over a broad speed range is required. 				
8	A 3-phase, 415 volts, 50 Hz, 100 kW, 6 pole squirrel cage induction motor with a rated slip of 2% will have a full load rotor speed of				
	(a) 1470 rpm	(b) <u>980 rpm</u>	(c) 1020 rpm	(d) none of the above	
9	In an induction mo	tor the loss which is in	dependent of motor load		
	a) I ² R loss of state	or b) I ² R loss of roto	c) <u>friction and windage</u>	loss d) all of the above	
10	Rewinding can affe efficiency:	ect which of the followi	ng factors that contribute to	deterioration in motor	
	 a) winding and slot design and winding material selection b) heat applied to strip windings, damage the insulation between laminations, thereby increasing eddy current losses c) change in the air gap may affect power factor and output torque d) all the above 				
11	If measured Line C Current?	Current of a 3 phase in	duction motor is 25.98 A, w	hat will be the Phase	
	a) <u>15 A</u>	b) 45 A	c) 8.96 A	d) 30 A	
12	The efficiency of co	ompressed air system	is around		
	a) 90%	b) 60%	c) 50%	d) <u>10%</u>	
13	The basic function of air dryer in a compressed air system is to a) remove remaining traces of moisture after the aftercooler b) store and smoothen pulsating air output c) reduce the temperature of the air before it enters the next state to increase efficiency d) prevent dust from entering compressor				
14					
14		statement for reciproca		man a company of the desired and	
			erature, the increase in ene		
		-	erature, the decrease in enderature, the increase in ene		
		·	e irrespective of inlet air ten		
1	1				

15	Which of the following parameters is not required for evaluating volumetric efficiency of the compressor?			
	a) FAD	b) Cylinder bore diamete	er c) Stroke length	d) <u>Power input</u>
16	Which of the following discharge pressure		ciprocating compressor is op	erated at a lower
	a) lower power co	nsumption		
	b) less load on the	e piston rods and hence	reduced maintenance costs	
	c) lower leakage l	osses		
	d) lower free air d	elivery than rated		
17	Which type of eneral at a dew point of		e opted if a user in a plant red	quires compressed air
	a) heatless purg c) aftercooler	ge type dryer	b) <u>heat of compression</u>d) refrigerant dryers	dryer
18	A 1.5 TR room air	conditioner having EER	(W/W) of 3.0, will draw input	t power of kW
	a) <u>1.75</u>	b) 3.00	c) 1.50	d) 2.00
19	system		wing regarding Vapour Com	pression Refrigeration
	b) evaporator rem c) compressor se	cts heat to atmosphere noves heat from process ands superheated vapor to sub-cooled liquid refri		<u>porator</u>
20	The head develop	ped by a centrifugal pum	p is not directly proportional t	0
	a) Impeller diame	eter	b) Shaft speed	
	c) Number of im	pellers	d) Diameter of discharge	<u>port</u>
21	Which of the follo	wing is incorrect in the ca	ase of cooling towers	
	 a)"Range" is the difference between the cooling tower water inlet and outlet temperature. b) "Approach" is the difference between the cooling tower outlet cold water temperature and ambient wet bulb temperature. d)'Range' is a better indicator of cooling tower performance. e) Cooling capacity is the heat rejected in kCal/hr or TR 			
22	Identify the correct	t statement:		
	b) the Specific Ra	atio of Compressors is tio of Fans is higher than tio of Compressors is low tio of Blowers is higher t	n Blowers wer than Fans	
23		tors made following stat will be your judgement?	ements regarding Vapour co	ompressor Refrigeration

	compressor power of	consumption	rature by 5.5°C, results in	
	Statement B: 5.5 consumption by 20		orator temperature reduc	ces compressor power
	a) statements A & E c) statement A is TF	<u>are TRUE</u> RUE & B is FALSE	b) statements A & B d) statement A is FA	
24	Decreasing the rpm	of a fan at partial loadir	ng by 10% results in:	
	b) decrease of 10% c) decrease of 10%	in flow rate and decreasin flow rate and increas	ease of 27% in power requirese of 19% in power requirese of 10% in power requirent reciable change in power	ment nent
25	The power drawn by	y a centrifugal fan is		
	a) inversely proporti	ional to fan efficiency	b) directly prop	portional to fan efficiency
	c) inversely proporti	onal to static pressure	d) inversely pro	pportional to flow rate
26	The frictional loss in	a piping system is prop	ortional to	
	a) flow	b) flow ²	c) 1/flow	d) 1/flow ²
27	For the same flow, maximum pressure		following diameter pipes,	the pump will work with
	<u>a) 100 mm</u>	b) 150 mm	c) 200 mm	d) 250 mm
28	It is possible to run	pumps in parallel if their	are	similar.
	a) suction heads	b) discharge heads	c) closed valve heads	d) none of the above
29		motor driving a pump e power transmitted to the	is 20 kW. The motor effine water is	ciency is 0.9 and pump
	a) <u>12.6 kW</u>	b) 18.0 kW	c) 14.0 kW	d) 31.75 kW
30	Small by-pass lines	are installed in pumps s	some times to	
	a) increase flow c) prevent pump rur	nning at zero flow	b) control pump d) reduce pump	delivery head power consumption
31	The refrigeration loa	ad in TR when 10 m ³ /hr	of water is cooled from a 1	5 °C to 7 °C is about
	a) 10	b) 8	<u>c) 26.5</u> d) r	none of the above
32	-	b) 8 nent of thermal energy in		none of the above
32	a) Indoor air - Chille b) Chilled water - In c) Indoor air - Cond	nent of thermal energy in ed water - Refrigerant-Co door air - Refrigerant-Co enser water - Chilled wa		<u>wer</u> rater erant

	contact with air. Statement B: Area of heat exchange is the surfa with air.	ce area of the fill sheets, which is in contact	
	a) statements A & B are false c) statements A & B are True	b) statement A is True & B is false d) statement A is false & B is True	
34	If the evaporation loss is 16 m³ /hr per cell and Cycles of Concentration is 3, the blow down requirement in m³ /hr per cell of a cooling tower:		
	a) <u>8</u> b) 5.33	c) 4 d) 2	
35	Cycles of Concentration (C.O.C) of a cooling to	wer will depend on	
	a) TDS in circulating water c) both a & b	b) TDS in make-up waterd) none of the above	
36	The Solar Heat Gain Coefficient (SHGC) of wind	ow of a building is 0.30. This means:	
	a) That the window allows 70 % of the sun's hea b) That the window allows 30 % of the sun's h interior	neat to pass through into the building	
	c) That 70 % of the sun's heat is incident on the d) That the window reflects back to exterior a mi		
37	FRP fans consume less energy than aluminium	fans because	
	a) they are lighter c) they encounter less system resistance	b) they have better efficienciesd) they deliver less air flow	
38	The hydraulic power in a pumping system depends on		
	a) motor efficiency c) both motor and pump efficiency	b) pump efficiency d) <u>none of the above</u>	
39	The most energy intensive heat transfer loop of a is:	a Vapour Compression Refrigeration System	
	a) Indoor air loop c) Refrigerant loop	b) Chilled water loopd) <u>Condenser water loop</u>	
40	The efficiency of a pump does not depend on		
	a) suction head b) discharge head	c) motor efficiency d) density of fluid	
41	The power factor of a squirrel cage induction mo	tor	
	a) decreases at low motor loading c) remains constant and is independent of load	b) decreases at high motor loadingd) cannot be predicted	
42	The slip of a synchronous motor will be		
	a) more than the induction motor c) zero	b) less than the induction motor d) load dependent	

43				
	In BEE Star label	ed distribution transformers	, which of following losses are defined?	
	a) total loss at 50	% and 100% loading	b) total loss at 75 % loading	
		% and 100% loading	d) total loss at 100% loading	
	+ ′		· · · · · · · · · · · · · · · · · · ·	
44	To optimize the v	oltage level fed to the lighting	ng feeder, the best option is to install.	
	a) servo stabilize	r for lighting feeder	b) "exclusive" transformer for lighting	
	c) microprocesso	r based controllers	d) high frequency (HF) electronic ballas	sts
45		he following device will he capacitor switching?	elp to eliminate the hunting problems norma	ally
	a) Intelligent Pou	ver Factor Controller	b) maximum demand controller	
	c) soft starter	el l'actor Controller	d) eddy current drives	
	+ ′			
46	Which one of the	following is an incorrect sta	itement?	
	a) fluorescent lan	np is an electric discharge la	amp	
	b) electronic balla	asts make use of semi-cond	uctor devices	
	c) electronic balla	asts have very low internal le	oss	
	d) fluorescent lan	nps can produce light by dir	ect connection to the power source	
47	A 2500 MW super Plant Load Factor		erated 15786 million units in the year 2011-12.	Its
	a) 60%	b) 65%	<u>c) 72%</u> d) 79 ⁶	%
48	Which of the follo	wing statements is not true	of maximum demand controller	
	a) switches off no	n-essential loads in Logica	seguence	
		on-essential loads in Logica led when demand approach		
	b) alarm is sound	led when demand approach		
	b) alarm is sound c) voltage level is	led when demand approach s closely regulated		
49	b) alarm is sound c) voltage level is d) plant equipme The main reasor	led when demand approach sclosely regulated nt selected for the load mar	les a preset value. lagement can be programmed ency Drive (VFD) for capacity control in electri	ical
49	b) alarm is sound c) voltage level is d) plant equipme The main reasor motor driven cen	led when demand approach closely regulated nt selected for the load man for using Variable Frequentifugal fans with fluctuating	les a preset value. lagement can be programmed ency Drive (VFD) for capacity control in electri	ical
49	b) alarm is sound c) voltage level is d) plant equipme The main reasor motor driven cen a) improved power	led when demand approach sclosely regulated int selected for the load man for using Variable Frequentifugal fans with fluctuating er quality	les a preset value. lagement can be programmed ency Drive (VFD) for capacity control in electri load is:	ical
49	b) alarm is sound c) voltage level is d) plant equipme The main reasor motor driven cen a) improved powe b) fan capacity	led when demand approach sclosely regulated int selected for the load man for using Variable Frequentifugal fans with fluctuating er quality is proportional to its specifications.	les a preset value. lagement can be programmed ency Drive (VFD) for capacity control in electri	ical
49	b) alarm is sound c) voltage level is d) plant equipme The main reason motor driven cen a) improved pow b) fan capacity proportional for	led when demand approach sclosely regulated nt selected for the load man for using Variable Frequentifugal fans with fluctuating er quality is proportional to its speed to the cube of its speed	les a preset value. lagement can be programmed ency Drive (VFD) for capacity control in electri load is:	ical
49	b) alarm is sound c) voltage level is d) plant equipme The main reason motor driven cen a) improved powe b) fan capacity proportional to c) improved powe	led when demand approach sclosely regulated int selected for the load man for using Variable Frequentifugal fans with fluctuating er quality is proportional to its specific the cube of its speed er factor	les a preset value. lagement can be programmed ency Drive (VFD) for capacity control in electri load is:	ical
49	b) alarm is sound c) voltage level is d) plant equipme The main reason motor driven cen a) improved powe b) fan capacity proportional to c) improved powe	led when demand approach sclosely regulated nt selected for the load man for using Variable Frequentifugal fans with fluctuating er quality is proportional to its speed to the cube of its speed	les a preset value. lagement can be programmed ency Drive (VFD) for capacity control in electri load is:	ical
49	b) alarm is sound c) voltage level is d) plant equipme The main reason motor driven cen a) improved powe b) fan capacity proportional to c) improved powe	led when demand approach sclosely regulated nt selected for the load man for using Variable Frequentifugal fans with fluctuating er quality is proportional to its speed to the cube of its speed er factor loop process control	nes a preset value. Inagement can be programmed ency Drive (VFD) for capacity control in electric load is:	ical
	b) alarm is sound c) voltage level is d) plant equipme The main reason motor driven cen a) improved powe b) fan capacity proportional to c) improved powe d) precise closed Select the incorre	led when demand approach sclosely regulated int selected for the load man for using Variable Frequentifugal fans with fluctuating er quality is proportional to its specific the cube of its speed er factor loop process control ect statement:	nes a preset value. Inagement can be programmed ency Drive (VFD) for capacity control in electric load is: Inagement can be programmed ency Drive (VFD) for capacity control in electric load is:	ical
	b) alarm is sound c) voltage level is d) plant equipme The main reason motor driven cen a) improved powe b) fan capacity proportional to c) improved powe d) precise closed Select the incorre a) harmonics occ	led when demand approach sclosely regulated int selected for the load mark for using Variable Frequentifugal fans with fluctuating in proportional to its specific the cube of its specific the cube of its specific factor loop process control extracts as spikes at intervals when the cube of its specific the cube of its specific factor loop process control extracts as spikes at intervals when the cube of its specific factor loop process control extracts as spikes at intervals when the cube of its specific factor loop process control extracts as spikes at intervals when the cube of its specific factor loop process control extracts as spikes at intervals when the cube of its specific factor loop process control extracts as spikes at intervals when the cube of its specific factor loop process control extracts as spikes at intervals when the cube of its specific factor loop process control extracts as spikes at intervals when the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extr	les a preset value. lagement can be programmed lency Drive (VFD) for capacity control in electrication is: led whereas the power drawn by the fan is lich are multiples of the supply frequency	ical
	b) alarm is sound c) voltage level is d) plant equipme The main reasor motor driven cen a) improved powe b) fan capacity proportional to c) improved powe d) precise closed Select the incorre a) harmonics occ b) harmonics are	led when demand approach sclosely regulated int selected for the load mark for using Variable Frequentifugal fans with fluctuating is proportional to its specific the cube of its specific the cube of its specific to process control lect statement:	les a preset value. lagement can be programmed lency Drive (VFD) for capacity control in electrication is: led whereas the power drawn by the fan is lich are multiples of the supply frequency all frequency	ical
	b) alarm is sound c) voltage level is d) plant equipme The main reasor motor driven cen a) improved powe b) fan capacity proportional to c) improved powed) precise closed Select the incorrect a) harmonics are c) induction motor	led when demand approach sclosely regulated int selected for the load mark for using Variable Frequentifugal fans with fluctuating in proportional to its specific the cube of its specific the cube of its specific factor loop process control extracts as spikes at intervals when the cube of its specific the cube of its specific factor loop process control extracts as spikes at intervals when the cube of its specific factor loop process control extracts as spikes at intervals when the cube of its specific factor loop process control extracts as spikes at intervals when the cube of its specific factor loop process control extracts as spikes at intervals when the cube of its specific factor loop process control extracts as spikes at intervals when the cube of its specific factor loop process control extracts as spikes at intervals when the cube of its specific factor loop process control extracts as spikes at intervals when the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extracts and the cube of its specific factor loop process control extr	ich are multiples of the supply frequency harmonics	ical

Section – II: SHORT DESCRIPTIVE QUESTIONS Marks: $8 \times 5 = 40$

- (i) Answer all <u>Eight</u> questions(ii) Each question carries <u>Five</u> marks

S-1	List any five industrial applications of a heat pump.
J-1	Industrial heat pumps are mainly used for:
Ans	industrial fleat pumps are mainly used for.
	 Space heating Heating of process streams
	3. Water heating for washing, sanitation and cleaning
	4. Steam production
	5. Drying/dehumidification6. Evaporation
	7. Distillation
	8. Concentration
S-2	A pump is delivering 64 m ³ /hr of water with a discharge head of 26 metres. The water is drawn
	from a sump where water level is 3 metres below the pump centerline. The power drawn by
	the motor is 8.89 kW at 88% motor efficiency. Find out the pump efficiency
Ans	Hydraulic power $P_h = Q (m^3/s) xTotal head, h_d - h_s (m) x r (kg/m^3) x g (m/s^2) / 1000$
	$Q = 64/3600 \text{ m}^3/\text{s}$, $h_d - h_s = 26 - (-3) = 29 \text{ m}$
	Hydraulic power $P_h = (64/3600) \times 29 \times 1000 \times 9.81 / 1000$
	= 5.0576 kW
	Pump shaft power = 8.89 kW x 0.88
	= 7.8232 kW
	Pump efficiency = hydraulic power / pump shaft power
	= 5.0576 / 7.8232
	= 64.65 %
S-3	How do the Time-Of-Day (TOD) metering and billing benefit the utilities as well as consumers?
Ans	ToD meter records demand, time, and energy and the ToD tariff are set in such a way that higher rates at peak load periods and lower rates at off-peak load periods. The billing as per ToD tariff benefits the consumers to avail maximum power and energy at off-peak hours at lowest tariff; and the higher peak period tariff dis-incentivise for increased drawl at peak period. This results effective maximum demand reduction to the utility, and in turn savings in peak time power procurement at higher rate as well as maximising the load factor for resulting better financials to the utility.
S-4	Explain briefly the difference between static and dynamic head of a centrifugal pumping system.
	Static head is simply the difference in height of the supply and destination reservoirs and it is independent of flow.
	Dynamic head is the friction loss, on the liquid being moved, in pipes, valves and equipment in the system. The friction losses are proportional to the square of the flow rate.

Compute AT & C (Aggregate Technical and Commercial) Losses for the following data:

S. No.	Description	Annual Data
1	Input Energy = (Import-Export), MU	11
2a	Energy Billed (Metered), MU	7
2b	Energy Billed (Un-Metered), MU	1
2c	Total Energy Billed	8
3	Amount Billed (Rs. lakhs)	450
4a	Gross Amount Collected (Rs. lakhs)	460
4b	Arrears Collected (Rs. lakhs)	40

Ans

	Estimation of AT & C Losses			
S. No.	Description		Annual Data	
1	Input Energy = (Import-Export), MU	Ei	11	
2a	Energy Billed (Metered), MU	E1	7	
2b	Energy Billed (Un-Metered), MU	E2	1	
2c	Total Energy Billed (E1 + E2)	Eb	8	
3	Amount Billed (Rs. lakhs)	Ab	450	
4a	Gross Amount Collected (Rs. lakhs)	AG	460	
4b	Arrears Collected (Rs. lakhs)	Ar	40	
4c	Amount Collected without Arrears (Rs. lakhs)	Ac=AG-Ar	420	
5	Billing Efficiency (BE)	= Eb/Ei *100%	72.7%	
6	Collection Efficiency(CE)	=Ac/Ab *100%	93.3%	
7	AT& C Loss	{1- (BE *CE) *100%	32.17%	

S-6

A DG set is operating at 700 kW load with 450° C exhaust gas temperature. The DG set generates 7.8 kg of exhaust gas/ kWh generated. The specific heat of gas at 430° C is 0.25 kCal/ kg $^{\circ}$ C. A heat recovery boiler is installed after which the exhaust temperature drops to 220° C. How much steam will be generated at 3 kg/ cm 2 with enthalpy of 650.57 kcal/ kg. Assume boiler feed water temperature as 65° C.

Ans

= 700 kWh x 7.8 kg gas generated/ kWh output x 0.25 kCal/ kg $^{\circ}$ C x (450 $^{\circ}$ C-220 $^{\circ}$ C) =3,13,950 kCal/hr

Steam generation = 3,13,950 kCal/hr / (650.57 - 65) = 536.14 kg/hr.

S-7

An energy audit of a fan was carried out. It was observed that the fan was delivering $18,500 \, \text{Nm}^3/\text{hr}$ of air with static pressure rise of $45 \, \text{mm}$ WC. The power measurement of the 3-phase induction motor coupled with the fan recorded $2.9 \, \text{kW}/$ phase on an average. The motor operating efficiency was assessed as 88% from the motor performance curves. What would be the fan static efficiency?

Ans

 $Q = 18,500 \text{ Nm}^3 / \text{hr.} = 5.13888 \text{ m}^3/\text{sec}$, SP = 45 mmWC,

 $\eta_{St} = ?$

	Power input to motor= 2.9x3=8.7 kW
	Power input to fan shaft=8.7 x0.88=7.656 kW
	Fan static $\eta = \frac{\text{Volume in } m^3/\text{sec } x \Delta P_{st} \text{ in } mmWc}{102 \text{ x Power input to shaft}}$
	=
S-8	List down any 5 energy conservation opportunities in compressed air system
Ans	§ Ensure air intake to compressor is not warm and humid by locating compressors in well-ventilated area or by drawing cold air from outside. Every 4°C rise in air inlet temperature will increase power consumption by 1 percent.
	S Clean air-inlet filters regularly. Compressor efficiency will be reduced by 2 percent for every 250 mm WC pressure drop across the filter.
	§ Keep compressor valves in good condition by removing and inspecting once every six months. Worn-out valves can reduce compressor efficiency by as much as 50 percent.
	§ Install manometers across the filter and monitor the pressure drop as a guide to replacement of element.
	§ Minimize low-load compressor operation; if air demand is less than 50 percent of compressor capacity, consider change over to a smaller compressor or reduce compressor speed appropriately (by reducing motor pulley size) in case of belt driven compressors.
	§ Consider the use of regenerative air dryers, which uses the heat of compressed air to remove moisture.
	§ Fouled inter-coolers reduce compressor efficiency and cause more water condensation in air receivers and distribution lines resulting in increased corrosion. Periodic cleaning of inter-coolers must be ensured.
	§ Compressor free air delivery test (FAD) must be done periodically to check the present operating capacity against its design capacity and corrective steps must be taken if required.
	§ If more than one compressor is feeding to a common header, compressors must be operated in such a way that only one small compressor should handle the load variations whereas other compressors will operate at full load.
	Any other relevant point

Marks: $6 \times 10 = 60$

Section - III: LONG DESCRIPTIVE QUESTIONS

- (i) Answer all Six questions
- (ii) Each question carries Ten marks

L-1

- a) In a cooling tower, the cooling water circulation rate is 1200 m³/hr. The water enters the cooling tower at 38°C. The ambient wet bulb temperature is 26°C. The cooling tower operates with an approach of 4°C. If the blowdown rate of the cooling tower is 1 % of the circulation rate, calculate the evaporation loss and COC.
- b) A medium scale industry has a load of 450 kVA. It has installed two transformers of 500 kVA each. The no load loss and full load copper loss are 760 W and 5400 W respectively. From the energy efficiency point of view the management wants to take a decision on whether to operate a single transformer on full load or two transformers equally sharing the load. What is your recommendation? Why?

Ans

a) Leaving cold water temperature = $26 + 4 = 30^{\circ}$ C Evaporation Loss (m³/hr) = $0.00085 \times 1.8 \times \text{circulation rate (m³/hr)} \times (T_1 - T_2)$

 $= 0.00085 \times 1.8 \times 1200 \times 8$

 $= 14.69 \text{ m}^3/\text{hr}$

Blowdown = $12 \text{ m}^3/\text{hr}$

Blowdown = Evaporation loss / (COC - 1)

12 = 14.69 / (COC - 1)

COC = 2.224

b)

1 x 500 kVA	
Transformer loss at 450	No load loss + [kVA load/Rated kVA] ² x full
	load loss
	760 + 4374
	5134 W
2 x 500 at 50% load	2 x {760 + [225/500] ² x 5400}
	3707 W

Two transformers are better because the losses are the least.

L-2	Fill in the blanks for the following	
	A motor which can co	nveniently be operated at lagging as well as leading power
	factors is the	motor
	A 50 Hz, 3-phase indepoles of the motor are	uction motor has a full load speed of 1440 r.p.m. The number of
	3. In a centrifugal pump	the velocity energy is converted to pressure energy by
		if the liquid to be pumped has density twice that of water, then uired (as compared to that while pumping water) will be
	5. The friction loss in a p	pipe carrying a fluid is proportional to the fifth power of
	6. A 10 MVA generator be MVAR	has power factor 0.866 lagging. The reactive power produced will
		cooled (TEFC) motors are efficient than Screen – (SPDP) induction motors
	Low speed Squirrel speed squirrel cage ir	cage induction motors are normallyefficient than high nduction motors
	9. Harmonics in electrici	ty supply are multiples of thefrequency
	For the same rating, squirrel cage inductio	slip ring induction motors are normallyefficient than n motors
Ans	 Synchronous 4 volute or diffuser 2 pipe diameter 5 more less fundamental less 	
L-3	a) Calculate the free air del data:	ivery (FAD) in m ³ /min of a compressor for the following observed
	Receiver capacity:	0.25 m^3
	Initial pressure:	1 kg/cm ² (g)
	Final pressure:	7 kg/cm ² (g)
	Initial temperature:	32 °C
	Final temperature:	52 °C
	Additional holdup volume:	0.05 m ³
	Compressor pump up time:	2.1 minutes
	b) Identify the following staten	nents as applicable to Vapor Compression Refrigeration System

Paper 3 –Set A Key

	(VCR) or to Vapor Absorption Refrigeration System(VAR).
	I. The system operates under vacuum(VCR/VAR) II. Uses water as a refrigerant(VCR/VAR) III. Uses large amount of high-grade energy(VCR/VAR) IV. COP decreases considerably with decrease in evaporator pressure(VCR/VAR) V. The system can work on lower evaporator pressures also without affecting the COP(VCR/VAR)
Ans	
	Q = $\frac{P_2 - P_1}{P_0} \times \frac{V}{t} \times \left(\frac{273 + t_1}{273 + t_2}\right)$ = $\frac{7 - 1}{1.026} \times \frac{(0.25 + 0.05)}{2.1} \times \left(\frac{273 + 32}{273 + 52}\right)$
	= 0.784 m ³ /min
	 I. The system operates under vacuum VAR II. Uses water as a refrigerant VAR III. Using large amount of high-grade energy VCR IV. The COP decreases considerably with decrease in evaporator pressure. VCR V. The system can work on lower evaporator pressures also without affecting the COP VAR
L-4	The measured values of a water cooled 20 TR package air conditioning plant are given
	below: Average air velocity across suction side filter: 2.5 m/s
	Cross Sectional area of suction: 2.4 m ² Inlet air: Dry Bulb:20 deg. C, Wet Bulb: 14 deg. C; Enthalpy: 9.37 k Cal per kg
	Outlet air: Dry Bulb: 12.7 deg. C, Wet Bulb: 11.3 deg. C; Enthalpy: 7.45 k Cal per kg Specific volume of Air: 0.85 m³/kg
	Power drawn: by Compressor : 18.42 k W by Pump : 2.1 k W
	by Pump : 2.1 k W by Evaporator Fan : 1.25 k W
	Calculate the following: i. Air Flow rate ii. Cooling effect delivered iii. Compressor kW/TR iv. Overall kW/TR v. Overall Energy Efficiency ratio in W/W
Ans	 i. Air flow rate = 2.5*2.4 = 6 m³/sec = 21600 m³/hr ii. Cooling Effect delivered = [(9.37-7.45)*21600]/(0.85*3024) = 16.13 TR = 56.73 kW iii. Compressor kW/TR = 18.42 /16.13 = 1.13 iv. Overall kW/TR = (18.42+3.1+1.25)/16.13 = 1.35
	iv. Overall kW/TR = (18.42+2.1+1.25)/16.13 = 1.35 v. Energy Efficiency Ratio(EER) in W/W = 56.73/21.77 = 2.606

L-5	a) How do you calculate the velocity of air/gas in a duct using the average differential pressure and density of the air/gas?
	b) A no load test was conducted in a delta connected 37 kW induction motor.
	Nameplate data- 3 Phase, 415 V, 50 Hz, 55 Amp
	Measured data at no load: Voltage, V = 415 Volts; Current, I = 17 Amps; Frequency, F = 50 Hz; Stator phase resistance at 30°C = 0.24 Ohms/ phase No load power = 955 Watts
	i. Find out Iron Loss plus Friction Loss plus Windage Loss
	ii. Stator Copper Loss at name plate ratings(full load), considering stator temperature =120 °C
	iii. No load power factor of the motor
Ans	a) Ans: Velocity V, m/s = $\frac{C_P \times (2 \times 9.81 \Delta p \times y)^{1/2}}{y}$
	C_p = Pitot tube constant, 0.85 (or) as given by the manufacturer Δp = Average differential pressure measured by pitot tube by taking
	measurement at number of points over the entire cross section of the duct. γ = Density at air/ gas at test condition
	b) Let Iron Loss plus Friction Loss plus Windage Loss be P_i +fw Stator Copper Loss, P_{st} , $30^{\circ}C = 3X (17/\sqrt{3})^2 X0.24 = 69.36$ Watt P_i +fw = P_{nl} - P_{st} = 955 - 69.36 = 885 .64
	Stator resistance at 120 °C = $0.24x[(120+235)/[(30+235)] = 0.322$ Ohms Stator Copper Loss at name plate ratings = $3x(55/\sqrt{3})^2$ X0.322 = 974.05 Watt No load power factor= $955/(1.7321x415x17)=0.078$
L-6	Answer any two of the following :
0	(i) two most important electrical parameters, which are to be monitored for safe operation of Diesel Generator set
	(ii) Slip method of motor load assessment
	(iii) Five options for electricity distribution loss optimization
	(iii) Five energy conservation opportunities in pumping system
Ans	(i) two most important electrical parameters, which are to be monitored for safe operation of Diesel Generator set are KVA and kW
	(ii) Slip method of motor load assessment
	In the absence of a power meter, the slip method can be used which requires a tachometer. The percentage loading can be calculated as follows:

Paper 3 –Set A Key

$Load = \frac{Slip}{S_s - S_r} *100\%$
$S_s - S_r$
Where:
Load = Output power as a % of rated power
Slip = Synchronous speed - Measured speed in rpm
$S_s = Synchronous$ speed in rpm at the operating frequency
S_r = Nameplate full-load speed
Slip also varies inversely with respect to the motor terminal voltage squared. A voltage
correction factor can, also, be inserted into the slip load equation. The voltage
compensated load can be calculated as shown
Slip
$Load = \frac{Slip}{(S_s - S_r) x (V_r / V)^2} x 100\%$
Where:
Load = Output power as a % of rated power
Slip = Synchronous speed - Measured speed in rpm
S_s = Synchronous speed in rpm
S_r = Nameplate full-load speed
V = RMS voltage, mean line to line of 3 phases
V_r = Nameplate rated voltage
iii) Five options for electricity distribution loss optimization
, i i i o opiiono ioi oicennosi, alembanion iese opiiniaanion
minimising length of distribution lines
adequate Size of Conductors
installaing Distribution Transformers (DTR) at load center on the Secondary Pietribution System
Distribution SystemMaintaining high Power Factor
High Voltage Distribution System (HVDS)
Incorporating Amorphous Core Transformers
Any other relevant point
iv) Five energy conservation opportunities in pumping system
Ensure adequate NPSH at site of installation
Operate pumps near best efficiency point.
Modify pumping system/pumps losses to minimize throttling.
Adapt to wide load variation with variable speed drives
Stop running multiple pumps - add an auto-start for an on-line spare or add a beester nump in the problem area.
booster pump in the problem area.

..... End of Section – III

Conduct water balance to minimise water consumption

Replace old pumps by energy efficient pumps

Any other relevant point