Paper -3 Energy Efficiency in Electrical Utilities

<u>Chapter -2 – Electric Motors</u>

Objective Type Questions

1.	The 1	Rotating	magnetic	field	is produced ir	n a
----	-------	----------	----------	-------	----------------	-----

- a) Single- phase induction motor
- b) Three- phase induction motor
- c) DC series motor
- d) All of the above
- 2. A 4 pole 50 Hz induction motor is running at 1470 rpm. What is the slip value?
- a) 0.2
- b) 0.02
- c) 0.04
- d) 0.4

```
Ans: Slip = (Ns - N)/Ns  Ns = (120f)/P = (120 \times 50)/4 = 1500  Slip(S) = (1500 - 1470)/1500 = 0.02
```

- 3. In a no-load test of a poly-phase induction motor, the measured power by the wattmeter consists of
- a) Core loss
- b) Copper loss
- c) Core loss, windage & friction loss
- d) Stator copper loss, iron loss, windage & friction loss
- 4. A 50 hp motor with a full load efficiency rating of 90 percent was metered and found to be operating at 25 kW. The percent motor load is
- a) 75%
- b) 50%
- c) 60%
- d) 25%

Ans: Input power of motor = $(50 \times 745.5)/(0.9 \times 1000) = 41.416$ KW Percent motor load = $(25/41.41) \times 100 = 60\%$

- 5. A 4-pole induction motor operating at 50Hz, with 1% slip will run at an actual speed of
- a) 1500 rpm
- b) 1515 rpm
- c) 1485 rpm
- d) None of the above

Ans:
$$N = Ns (1-S) = 1500 (1-.01) = 1485 \text{ rpm}$$
 $Ns = (120 \times 50)/4 = 1500 \text{ rpm}$

- 6. With Decrease in speed of the motor Capacitive kVAr ------
- a) Increases

- b) Decreases
- c) Does not change
- d) None of the above

Ans: As the motor speed decreases Slip increases and the reactive power consumption (inductive kVAr) increases, the capacitive kVAr supplied by the capacitors increases

- 7. Reduction in supply voltage by 10% will change the torque of the motor by
- a) 10%
- b) 19%
- c) 38%
- d) No Change
- 8. One low investment to improve the Efficiency of Squirrel cage motor which operates consistently below 40% of its rated capacity is by
- a) Operating in Star mode
- b) Operating in Delta mode
- c) Replace motor with Correct size
- d) None of the above
- 9. A 7.5KW, 415V 14.5A 1460 rpm 3 Phase rated induction motor with full load efficiency of 88% draws 10.1A and 5.1KW of input power. The % loading of the motor is
- a) 60%
- b) 75%
- c) 70%
- d) 65%

Ans: Rated Input Power = 7.5/0.88 = 8.5KW

Actual Input power drawn = 5.1 KW % Loading = $(5.1/8.5) \times 100 = 60\%$

- 10. A 415V, 15KW 3 phase induction motor operates at full load 88% efficiency and 0.85 pf lagging. The current drawn by the motor is
- a) 42.5 A
- b) 48.32 A
- c) 40 A
- d) 27.9 A

Ans: Input Power = 15/0.88 = 17.045 KW Current drawn = $17.045 / (\sqrt{3} \times 415 \times 0.85) = 27.9 \text{ A}$

- 11. Stator phase resistance at 30° C is 0.264Ω . At 120° C its value will be
- a) 0.264Ω
- b) 0.354Ω
- c) 0.237Ω
- d) None of the above

Ans: $R2/R1 = (235 + t_2) / (235 + t_1) = 0.264 \times (355/265) = 0.354\Omega$

- 12. KW rating indicated on the name plate of an induction motor indicates
- a) Rated input of the motor
- b) Rated output of the motor
- c) Maximum input power the motor can draw
- d) Maximum instantaneous input power of the motor
- 13. Select the incorrect statement:
- a) Harmonics occur as spikes at intervals which are multiples of the supply frequency
- b) Harmonics are multiples of the fundamental frequency
- c) Induction motors are the major sources of harmonics
- d) Transformers operating near saturation level create harmonics
- 14. Hydrodynamic principle for speed control is used in
- a) DC drives
- b) Fluid Coupling
- c) Pulse width Modulation
- d) Eddy current drives
- 15. In an Induction motor magnetic field is established in
- a) Stator winding only
- b) Rotor winding only
- c) Stator & Rotor winding
- d) None of the above
- 16. The slip of a synchronous motor will be
- a) More than the induction motor
- b) Less than the induction motor
- c) Zero
- d) Load dependent
- 17. The power factor of a squirrel cage induction motor
- a) Decreases at low motor loading
- b) Decreases at high motor loading
- c) Remains constant and is independent of load
- d) Cannot be predicted
- 18. In an induction motor the loss which is independent of motor load
- a) I²R loss of stator
- b) I²R loss of rotor
- c) Friction and windage loss
- d) All of the above

- 19. The voltage unbalance in three phase supply is 1.5 %. If the motor is operating at 100 oC, the additional temperature rise in °C due to voltage unbalance is
 a). 4.5
 b). 9
- c). 0
- d). None of the above

Ans: Temp Rise = $2 \times (\% \text{ Voltage Unbalance})^2 = 2 \times 1.5^2 = 4.5$

- 20. Which parameters need to be measured to assess the percentage loading of a motor by slip method neglecting voltage correction?
- a) Motor speed
- b) Synchronous speed
- c) Operating motor speed and frequency
- d) Operating current
- 21. The performance of rewinding of an induction motor can be assessed by which of the following factors?
- a) No load current
- b) Stator resistance per phase
- c) Load current
- d) Both no load current and stator resistance per phase
- 22. An induction motor rated for 75 kW and 94 % efficiency, operating at full load, will
- a) Deliver 70.5 kW
- b) Deliver 75 kW
- c) Draw 75 kW
- d) Deliver 79.78 kW

Ans: Rating indicates Rated Output of the motor

- 23. Which loss is considered the most unreliable or complicated to measure in electric motor efficiency testing?
- a) Stator Cu loss
- b) Rotor Cu loss
- c) Stator Iron loss
- d) Stray loss
- 24. A 22 kW, 415 V, 45A, 0.8 PF, 1475 RPM, 4 pole 3 phase induction motor operating at 420 V, 40 A and 0.8 PF. What will be the rated efficiency
- a) 85.0%
- b) 94.5%
- c) 89.9%

d) 88.2%

Ans: Input Power = $\sqrt{3} \times 415 \times 45 \times 0.8 = 25.876$ KW Rated output power = 22KW Efficiency = $(22/25.876) \times 100 = 85\%$

- 25. Star delta starter of an induction motor
- a) Reduces voltage by inserting resistance in rotor circuit
- b) Reduces voltage by inserting resistance in stator circuit
- c) Reduces voltage through a transformer
- d) Reduces the supply voltage due to change in connection configuration

