Paper -4 Energy Performance Assessment for Equipment & Utility Systems

Chapter -1 - Boiler

1. Boiler Efficiency =
$$\frac{\text{Heat in Steam Output (Kcal)}}{\text{Heat in fuel Input (Kcal)}} = \frac{\text{Quantity of Steam generation}}{\text{Quantity of fuel consumption}}$$

2. Boiler Efficiency = $\{ \text{Steam flow rate} \left(\frac{\text{kg}}{\text{hr}} \right) \times \left(\text{Steam enthalpy} \left(\frac{\text{Kcal}}{\text{kg}} \right) - \text{feed water enthalpy} \left(\frac{\text{Kcal}}{\text{kg}} \right) \right) \}$

Fuel firing rate $\left(\frac{\text{kg}}{\text{hr}}\right) \times \text{Grosscalorific Value}\left(\frac{Kcal}{kg}\right)$

3.
$$\eta b = \frac{Q (H-h)}{q \times GCV}$$

Q = Steam flow rate $\left(\frac{kg}{hr}\right)$ L E A R N I N G

 $H = Steam enthalpy \left(\frac{Kcal}{kg}\right)$

 $h = Feed water enthalpy \left(\frac{Kcal}{kg}\right)$

q = Fuel firing rate $\left(\frac{kg}{hr}\right)$

GCV = Grosscalorific Value $\left(\frac{Kcal}{kg}\right)$

4. Evaporation Ratio =
$$\frac{\text{Quantity of steam } (\frac{\text{Kcal}}{\text{kg}})}{\text{Quantity of Fuel } (\frac{\text{Kcal}}{\text{Kg}})} = \frac{Q}{q} = \frac{\eta b \times GCV}{(H-h)}$$

5. Efficiency of Boiler α Evaporation Ratio

6. Theoretical air required for combustion =
$$\frac{\left\{ (11.6 \times C) + 34.8 \left(H2 - \left(\frac{O2}{8} \right) \right) + (4.35 \times S) \right\}}{100}$$

= kg/kg of fuel

C, H2, O2, S = Percentage of Carbon, Hydrogen, Oxygen & Sulphur present in the fuel

7. Percentage Excess Air supplied
$$\% = \frac{\{02\%\}}{21-02\%} \times 100$$

▶ 02 measurement is recommended if 02 measurement is not available use CO2 measurement

	Т	7000 [(00 @) (00 @)]
		$\frac{7900 x[(CO_2\%)_t - (CO_2\%)_a]}{(CO_2\%)_t - (CO_2\%)_a}$ [from flue gas analysis]
		$(CO_2)_a\% \ x [100 - (CO_2\%)_t]$
Where, $(CO_2\%)_t$	=	Theoretical CO ₂
$(CO_2\%)_a$	=	Actual CO ₂ % measured in flue gas
		Moles of C
(CO ₂) _t	=	Moles of N_2 + Moles of C + Moles of S
24.1		Wt of N_2 in theoritical air + Wt of N_2 in fuel
Moles of N ₂	=	$Mol.Wtof N_2$ $Mol.Wtof N_2$
Moles of C	=	Wt of C in fuel
		$\overline{MolecularWtofC}$
Moles of S	=	Wt of S in fuel
		$\overline{Molecular Wtof S}$

8. Actual mass of Air Supplied /kg of fuel AAS = 1+(EA/100) ×Theoretical air

Indirect Method of Determination of Boiler Efficiency

The various losses in the boiler are

- 1. Heat Loss due to flue gas (L1)
- 2. Heat Loss due to Hydrogen in fuel (L2)
- 3. Heat Loss due to Moisture in fuel (L3)
- 4. Heat Loss due to Moisture in air (L4)

- 5. Loss due to Partial combustion of C to CO (L5)
- 6. Loss due to surface radiation (L6)
- 7. Unburnt Loss in fly ash (L7)
- 8. Unburnt Loss in bottom ash (L8)

Boiler Efficiency by Indirect Method= 100 - (L1+L2+L3+L4+L5+L6+L7+L8)

1. Heat Loss due to dry flue gas L1 = $\frac{\text{m} \times \text{Cp} \times (\text{Tf-Ta})}{\text{GCV of Fuel}}$ ×100

m = Mass of dry flue gas in (kg/kg of fuel)

Cp = Specific heat of flue gas in (kcal/kg)

Tf = Flue gas temperature in (°C)

Ta = Ambient temperature in (°C)

Mass of Dry flue gas = CO2 in fuel + SO2 in fuel + N2 in fuel + N2 in Actual mass of air supplied + O2 in flue gas

LEARNING

2. Heat Loss due to hydrogen in fuel L2 = $\frac{9H2 \times (584 + \{Cp \times (Tf - Ta)\})}{GCV \text{ of Fuel}} \times 100$

H2 = hydrogen present in fuel (kg/kg of fuel)

Cp = specific heat of super-heated steam in (Kcal/kg)

Tf = Flue gas temperature in (°C)

Ta = Ambient temperature in (°C)

584 = Latent heat of vaporization in (Kcal/kg)

3. Heat Loss due to Moisture present in fuel L3 = $\frac{M \times (584 + \{Cp \times (Tf - Ta)\})}{GCV \text{ of Fuel}} \times 100$

M = Moisture in fuel (kg/kg of fuel)

Cp = specific heat of super-heated steam in (Kcal/kg)

Tf = Flue gas temperature in $(^{\circ}C)$

Ta = Ambient temperature in (°C)

4. Heat Loss due to Moisture present in air L4 = $\frac{AAS \times Humidity \ factor \times \{Cp \times (Tf - Ta)\}}{GCV \ of \ Fuel} \times 100$

AAS = Actual mass of air supplied per kg of fuel

Humidity factor = Kg of water /kg of dry air

Cp = specific heat of super-heated steam in (Kcal/kg)

Tf = Flue gas temperature in (°C)

Ta = Ambient temperature in (°C)

5. Heat Loss due to incomplete combustion L5 = $\frac{\%\text{CO} \times \text{C}}{\%\text{CO} \times \%\text{CO2}} \times \frac{5654}{\text{GCV of fuel}} \times 100$

CO = Volume of CO in flue gas (%) (1% = 10000ppm)

CO2 = Actual volume of CO2 in flue gas (%)

C = Carbon content (kg/kg of fuel)

5654 = Heat loss due partial combustion of carbon (kcal/kg of carbon)

6. Heat Loss due to Radiation & Convection =

For Industrial Fire tube / Packaged boiler = 1.5% to 2.5%

For industrial Water tube boiler = 2 to 3%

For Power station boiler = 0.4% to 1%

Can be calculated using the equation also.

Note: For Solid Fuels only L7 & L8 applicable

7. Heat Loss due to unburnt in fly ash $L7 = \frac{\text{(Total ashcollected /kg of fuelburnt)} \times \text{GCV of flyash}}{\text{GCV of fuel}} \times 100$

- 8. Heat Loss due to unburnt in bottom ash = $\frac{\text{(Total ashcollected /kg of fuelburnt)} \times \text{GCV of bottom ash}}{\text{GCV of fuel}} \times 100$
- 9. GCV = NCV + $\left\{\frac{9H2\% + M\%}{100}\right\} \times 584$

